001017878 001__ 1017878
001017878 005__ 20240712100944.0
001017878 0247_ $$2doi$$a10.5194/acp-23-5969-2023
001017878 0247_ $$2ISSN$$a1680-7316
001017878 0247_ $$2ISSN$$a1680-7324
001017878 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04390
001017878 0247_ $$2WOS$$aWOS:001000070100001
001017878 037__ $$aFZJ-2023-04390
001017878 082__ $$a550
001017878 1001_ $$00000-0003-1346-5352$$aJin, Lixu$$b0$$eCorresponding author
001017878 245__ $$aConstraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations
001017878 260__ $$aKatlenburg-Lindau$$bEGU$$c2023
001017878 3367_ $$2DRIVER$$aarticle
001017878 3367_ $$2DataCite$$aOutput Types/Journal article
001017878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1699598083_2930
001017878 3367_ $$2BibTeX$$aARTICLE
001017878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017878 3367_ $$00$$2EndNote$$aJournal Article
001017878 520__ $$aThe impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chem chemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventories widely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with each other within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emission ratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chem simulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) and FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BB inventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredict observed vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute the negative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed vertical profiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenated VOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondary sources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable to underpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraft and ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nested GEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term ground measurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem only account for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactive organic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeled VOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primary emission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem.
001017878 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001017878 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017878 7001_ $$0P:(DE-HGF)0$$aPermar, Wade$$b1
001017878 7001_ $$0P:(DE-HGF)0$$aSelimovic, Vanessa$$b2
001017878 7001_ $$0P:(DE-HGF)0$$aKetcherside, Damien$$b3
001017878 7001_ $$00000-0002-8415-6808$$aYokelson, Robert J.$$b4
001017878 7001_ $$00000-0002-6304-6554$$aHornbrook, Rebecca S.$$b5
001017878 7001_ $$0P:(DE-HGF)0$$aApel, Eric C.$$b6
001017878 7001_ $$0P:(DE-Juel1)180487$$aKu, I-Ting$$b7$$ufzj
001017878 7001_ $$00000-0001-9180-508X$$aCollett Jr., Jeffrey L.$$b8
001017878 7001_ $$0P:(DE-HGF)0$$aSullivan, Amy P.$$b9
001017878 7001_ $$00000-0003-1965-9051$$aJaffe, Daniel A.$$b10
001017878 7001_ $$00000-0002-4241-838X$$aPierce, Jeffrey R.$$b11
001017878 7001_ $$0P:(DE-HGF)0$$aFried, Alan$$b12
001017878 7001_ $$0P:(DE-HGF)0$$aCoggon, Matthew M.$$b13
001017878 7001_ $$0P:(DE-Juel1)184937$$aGkatzelis, Georgios$$b14$$ufzj
001017878 7001_ $$0P:(DE-HGF)0$$aWarneke, Carsten$$b15
001017878 7001_ $$0P:(DE-HGF)0$$aFischer, Emily V.$$b16
001017878 7001_ $$00000-0002-4892-454X$$aHu, Lu$$b17
001017878 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-5969-2023$$gVol. 23, no. 10, p. 5969 - 5991$$n10$$p5969 - 5991$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001017878 8564_ $$uhttps://juser.fz-juelich.de/record/1017878/files/acp-23-5969-2023.pdf$$yOpenAccess
001017878 909CO $$ooai:juser.fz-juelich.de:1017878$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180487$$aForschungszentrum Jülich$$b7$$kFZJ
001017878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184937$$aForschungszentrum Jülich$$b14$$kFZJ
001017878 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001017878 9141_ $$y2023
001017878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001017878 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017878 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001017878 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001017878 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001017878 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001017878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001017878 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
001017878 9801_ $$aFullTexts
001017878 980__ $$ajournal
001017878 980__ $$aVDB
001017878 980__ $$aUNRESTRICTED
001017878 980__ $$aI:(DE-Juel1)IEK-8-20101013
001017878 981__ $$aI:(DE-Juel1)ICE-3-20101013