001017899 001__ 1017899
001017899 005__ 20240116084322.0
001017899 0247_ $$2doi$$a10.1103/PhysRevE.107.L013001
001017899 0247_ $$2ISSN$$a2470-0045
001017899 0247_ $$2ISSN$$a2470-0061
001017899 0247_ $$2ISSN$$a1063-651X
001017899 0247_ $$2ISSN$$a1095-3787
001017899 0247_ $$2ISSN$$a1538-4519
001017899 0247_ $$2ISSN$$a1539-3755
001017899 0247_ $$2ISSN$$a1550-2376
001017899 0247_ $$2ISSN$$a2470-0053
001017899 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04411
001017899 0247_ $$2pmid$$a36797875
001017899 0247_ $$2WOS$$aWOS:000909675200002
001017899 037__ $$aFZJ-2023-04411
001017899 082__ $$a530
001017899 1001_ $$aPomyalov, Anna$$b0
001017899 245__ $$aSelf-healing solitonic slip pulses in frictional systems
001017899 260__ $$aWoodbury, NY$$bInst.$$c2023
001017899 3367_ $$2DRIVER$$aarticle
001017899 3367_ $$2DataCite$$aOutput Types/Journal article
001017899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1699605731_12259
001017899 3367_ $$2BibTeX$$aARTICLE
001017899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017899 3367_ $$00$$2EndNote$$aJournal Article
001017899 520__ $$aA prominent spatiotemporal failure mode of frictional systems is self-healing slip pulses, which are propagating solitonic structures that feature a characteristic length. Here, we numerically derive a family of steady state slip pulse solutions along generic and realistic rate-and-state dependent frictional interfaces, separating large deformable bodies in contact. Such nonlinear interfaces feature a nonmonotonic frictional strength as a function of the slip velocity, with a local minimum. The solutions exhibit a diverging length and strongly inertial propagation velocities, when the driving stress approaches the frictional strength characterizing the local minimum from above, and change their character when it is away from it. An approximate scaling theory quantitatively explains these observations. The derived pulse solutions also exhibit significant spatially-extended dissipation in excess of the edge-localized dissipation (the effective fracture energy) and an unconventional edge singularity. The relevance of our findings for available observations is discussed.
001017899 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001017899 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017899 7001_ $$aLubomirsky, Yuri$$b1
001017899 7001_ $$00000-0003-2988-8608$$aBraverman, Lara$$b2
001017899 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b3$$eCorresponding author
001017899 7001_ $$00000-0001-8821-1635$$aBouchbinder, Eran$$b4
001017899 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.107.L013001$$gVol. 107, no. 1, p. L013001$$n1$$pL013001$$tPhysical review / E$$v107$$x2470-0045$$y2023
001017899 8564_ $$uhttps://juser.fz-juelich.de/record/1017899/files/PhysRevE.107.L013001.pdf$$yOpenAccess
001017899 909CO $$ooai:juser.fz-juelich.de:1017899$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b3$$kFZJ
001017899 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001017899 9141_ $$y2023
001017899 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001017899 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017899 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2022$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001017899 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001017899 920__ $$lyes
001017899 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001017899 980__ $$ajournal
001017899 980__ $$aVDB
001017899 980__ $$aUNRESTRICTED
001017899 980__ $$aI:(DE-Juel1)PGI-2-20110106
001017899 9801_ $$aFullTexts