001017935 001__ 1017935
001017935 005__ 20250129092436.0
001017935 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04442
001017935 037__ $$aFZJ-2023-04442
001017935 041__ $$aEnglish
001017935 1001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b0$$eCorresponding author$$ufzj
001017935 1112_ $$aSilicon Quantum Electronics Workshop 2023$$cKyoto$$d2023-10-31 - 2023-11-02$$gSiQEW 2023$$wJapan
001017935 245__ $$aCryogenic CMOS for Local Qubit Control and Readout – A Path to Scaling
001017935 260__ $$c2023
001017935 3367_ $$033$$2EndNote$$aConference Paper
001017935 3367_ $$2BibTeX$$aINPROCEEDINGS
001017935 3367_ $$2DRIVER$$aconferenceObject
001017935 3367_ $$2ORCID$$aCONFERENCE_POSTER
001017935 3367_ $$2DataCite$$aOutput Types/Conference Poster
001017935 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1700468265_6408$$xAfter Call
001017935 520__ $$aThe majority of the scientific research community for quantum computing agrees that an estimated number of around 106 qubits are required to build a universal quantum computer [1]. This number leads to foreseeable connectivity bottlenecks to feed all the required biasing, control and read-out signals into and out of the cryostat. A proposed solution is local cryogenic classical electronics, bringing control and read-out closer to the quantum bits themselves.For this task, the ZEA-2 – Electronic Systems institute – develops classical electronic systems using modern CMOS technologies, due to their low area footprint, ultra-low power consumption and natural synergy with semiconductor qubits. This poster highlights the ongoing development and measurement results at ZEA-2 for integrated cryogenic circuits and co-integrating them directly with qubits. This includes experimental results of a qubit bias voltage digital-to-analog converter (Bias-DAC) in a bulk 65 nm CMOS technology [2], placed at the milli-Kelvin stage alongside the qubit [3,4]. Results of cryogenic supply regulation circuits in an advanced 22nm FDSOI CMOS process are shown as well [5]. Furthermore, a brief introduction into CMOS and possible options for an optimized cryogenic specific CMOS technology is given to enhance future IC designs in power efficiency and outlook to qubit readout. This method of integration paves a way for QC scalability.[1] Vandersypen, L.M.K., Bluhm, H., Clarke, J.S. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf 3, 34 (2017). https://doi.org/10.1038/s41534-017-0038-y[2] P. Vliex et al., "Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications," in IEEE Solid-State Circuits Letters, vol. 3, pp. 218-221, 2020, doi: 10.1109/LSSC.2020.3011576.[3] R. Otten, L. Schreckenberg, P. Vliex et al., "Qubit Bias using a CMOS DAC at mK Temperatures," 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, United Kingdom, 2022, pp. 1-4, doi: 10.1109/ICECS202256217.2022.9971043. [4] L. Schreckenberg, R. Otten, P. Vliex et al., "SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature„ To be published in 2023 49th IEEE European Conference on Solid-State Circuits (ESSCIRC)[5] A. R. Cabrera-Galicia, A. Ashok, P. Vliex et al., "Towards the Development of Cryogenic Integrated Power Management Units," 2022 IEEE 15th Workshop on Low Temperature Electronics (WOLTE), Matera, Italy, 2022, pp. 1-4, doi: 10.1109/WOLTE55422.2022.9882781.
001017935 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001017935 7001_ $$0P:(DE-Juel1)187429$$aBühler, Jonas$$b1$$ufzj
001017935 7001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b2$$ufzj
001017935 7001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, Lea$$b3$$ufzj
001017935 7001_ $$0P:(DE-Juel1)174088$$aOtten, Rene$$b4$$ufzj
001017935 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5$$ufzj
001017935 8564_ $$uhttps://juser.fz-juelich.de/record/1017935/files/Poster.pdf$$yOpenAccess
001017935 909CO $$ooai:juser.fz-juelich.de:1017935$$pdriver$$pVDB$$popen_access$$popenaire
001017935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b0$$kFZJ
001017935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187429$$aForschungszentrum Jülich$$b1$$kFZJ
001017935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b2$$kFZJ
001017935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b3$$kFZJ
001017935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174088$$aForschungszentrum Jülich$$b4$$kFZJ
001017935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b5$$kFZJ
001017935 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001017935 9141_ $$y2023
001017935 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017935 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001017935 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001017935 9801_ $$aFullTexts
001017935 980__ $$aposter
001017935 980__ $$aVDB
001017935 980__ $$aUNRESTRICTED
001017935 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001017935 980__ $$aI:(DE-Juel1)PGI-11-20170113
001017935 981__ $$aI:(DE-Juel1)PGI-4-20110106