001     1017950
005     20240403082756.0
024 7 _ |a 10.1109/IGARSS52108.2023.10283416
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04455
|2 datacite_doi
024 7 _ |a WOS:001098971601004
|2 WOS
037 _ _ |a FZJ-2023-04455
100 1 _ |a Tian, Liang
|0 P:(DE-HGF)0
|b 0
111 2 _ |a IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
|c Pasadena
|d 2023-07-16 - 2023-07-21
|w CA
245 _ _ |a End-to-End Process Orchestration of Earth Observation Data Workflows with Apache Airflow on High Performance Computing
260 _ _ |c 2023
|b IEEE
295 1 0 |a IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium : [Proceedings] - IEEE, 2023. - ISBN 979-8-3503-2010-7 - doi:10.1109/IGARSS52108.2023.10283416
300 _ _ |a 711-714
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1702456531_7741
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Earth Observation (EO) data processing faces challenges due to large volumes, multiple sources, and diverse formats. To address this issue, this paper presents a scalable and parallelizable workflow using Apache Airflow, capable of integrating Machine Learning (ML) and Deep Learning (DL) models with Modular Supercomputing Architecture (MSA) systems. To test the workflow, we considered the production of large-scale Land-Cover (LC) maps as a case study. The workflow manager, Airflow, offers scalability, extensibility, and programmable task definition in Python. It allows us to execute different steps of the workflow in different High-Performance Computing (HPC) systems. The workflow is demonstrated on the Dynamical Exascale Entry Platform (DEEP) and Jülich Research on Exascale Cluster Architectures (JURECA) hosted at the Jülich Supercomputing Centre (JSC), a platform that incorporates heterogeneous JSC systems.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 2
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 3
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 1
|u fzj
700 1 _ |a Mozaffari, Amirpasha
|0 P:(DE-Juel1)166264
|b 2
|u fzj
700 1 _ |a Kreshpa, Enxhi
|0 P:(DE-Juel1)188445
|b 3
|u fzj
700 1 _ |a Paris, Claudia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 5
|u fzj
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 6
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 7
|u fzj
773 _ _ |a 10.1109/IGARSS52108.2023.10283416
856 4 _ |u https://juser.fz-juelich.de/record/1017950/files/Liang_Tian_IGARSS_2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1017950
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188445
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)6952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21