001017951 001__ 1017951
001017951 005__ 20240403082809.0
001017951 0247_ $$2doi$$a10.1109/IGARSS52108.2023.10281523
001017951 0247_ $$2WOS$$aWOS:001098971601022
001017951 037__ $$aFZJ-2023-04456
001017951 1001_ $$0P:(DE-Juel1)191143$$aPasetto, Edoardo$$b0$$ufzj
001017951 1112_ $$aIEEE International Geoscience and Remote Sensing Symposium (IGARSS)$$cPasadena$$d2023-07-16 - 2023-07-21$$wCA
001017951 245__ $$aAdiabatic Quantum Kitchen Sinks with Parallel Annealing for Remote Sensing Regression Problems
001017951 260__ $$bIEEE$$c2023
001017951 300__ $$a784-787
001017951 3367_ $$2ORCID$$aCONFERENCE_PAPER
001017951 3367_ $$033$$2EndNote$$aConference Paper
001017951 3367_ $$2BibTeX$$aINPROCEEDINGS
001017951 3367_ $$2DRIVER$$aconferenceObject
001017951 3367_ $$2DataCite$$aOutput Types/Conference Paper
001017951 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1702449430_27254
001017951 520__ $$aKernel methods are class of Machine Learning (ML) models that have been widely employed in the literature for Earth Observation (EO) applications. The increasing development of quantum computing hardware motivates further research to improve the capabilities and the performances of data analysis algorithms. In this manuscript an implementation of Adiabatic Quantum Kitchen Sinks (AQKS) kernel estimation algorithm integrated with parallel quantum annealing is presented. Such combination with the concept of parallel quantum annealing allows for the solving of multiple problem instances in the same annealing cycle, thus reducing the number of rquired calls to the quantum annealing solver. The proposed workflow is then implemented using a D-Wave Advantage system and tested on a regression problem on a real Remote Sensing (RS) dataset. The obtained results are then analyzed and compared with those obtained by a classical kernel approximation algorithm based on Random Fourier Features.
001017951 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001017951 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001017951 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x2
001017951 588__ $$aDataset connected to CrossRef Conference
001017951 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1$$ufzj
001017951 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001017951 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b3$$ufzj
001017951 773__ $$a10.1109/IGARSS52108.2023.10281523
001017951 8564_ $$uhttps://juser.fz-juelich.de/record/1017951/files/IGARSS_2023_Edoardo_Pasetto.pdf$$yRestricted
001017951 909CO $$ooai:juser.fz-juelich.de:1017951$$pVDB
001017951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191143$$aForschungszentrum Jülich$$b0$$kFZJ
001017951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b1$$kFZJ
001017951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001017951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b3$$kFZJ
001017951 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001017951 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001017951 9141_ $$y2023
001017951 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001017951 980__ $$acontrib
001017951 980__ $$aVDB
001017951 980__ $$aI:(DE-Juel1)JSC-20090406
001017951 980__ $$aUNRESTRICTED