001     1017951
005     20240403082809.0
024 7 _ |a 10.1109/IGARSS52108.2023.10281523
|2 doi
024 7 _ |a WOS:001098971601022
|2 WOS
037 _ _ |a FZJ-2023-04456
100 1 _ |a Pasetto, Edoardo
|0 P:(DE-Juel1)191143
|b 0
|u fzj
111 2 _ |a IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
|c Pasadena
|d 2023-07-16 - 2023-07-21
|w CA
245 _ _ |a Adiabatic Quantum Kitchen Sinks with Parallel Annealing for Remote Sensing Regression Problems
260 _ _ |c 2023
|b IEEE
300 _ _ |a 784-787
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1702449430_27254
|2 PUB:(DE-HGF)
520 _ _ |a Kernel methods are class of Machine Learning (ML) models that have been widely employed in the literature for Earth Observation (EO) applications. The increasing development of quantum computing hardware motivates further research to improve the capabilities and the performances of data analysis algorithms. In this manuscript an implementation of Adiabatic Quantum Kitchen Sinks (AQKS) kernel estimation algorithm integrated with parallel quantum annealing is presented. Such combination with the concept of parallel quantum annealing allows for the solving of multiple problem instances in the same annealing cycle, thus reducing the number of rquired calls to the quantum annealing solver. The proposed workflow is then implemented using a D-Wave Advantage system and tested on a regression problem on a real Remote Sensing (RS) dataset. The obtained results are then analyzed and compared with those obtained by a classical kernel approximation algorithm based on Random Fourier Features.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 1
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
|u fzj
773 _ _ |a 10.1109/IGARSS52108.2023.10281523
856 4 _ |u https://juser.fz-juelich.de/record/1017951/files/IGARSS_2023_Edoardo_Pasetto.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1017951
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21