Home > Publications database > Adiabatic Quantum Kitchen Sinks with Parallel Annealing for Remote Sensing Regression Problems > print |
001 | 1017951 | ||
005 | 20240403082809.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS52108.2023.10281523 |2 doi |
024 | 7 | _ | |a WOS:001098971601022 |2 WOS |
037 | _ | _ | |a FZJ-2023-04456 |
100 | 1 | _ | |a Pasetto, Edoardo |0 P:(DE-Juel1)191143 |b 0 |u fzj |
111 | 2 | _ | |a IEEE International Geoscience and Remote Sensing Symposium (IGARSS) |c Pasadena |d 2023-07-16 - 2023-07-21 |w CA |
245 | _ | _ | |a Adiabatic Quantum Kitchen Sinks with Parallel Annealing for Remote Sensing Regression Problems |
260 | _ | _ | |c 2023 |b IEEE |
300 | _ | _ | |a 784-787 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1702449430_27254 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Kernel methods are class of Machine Learning (ML) models that have been widely employed in the literature for Earth Observation (EO) applications. The increasing development of quantum computing hardware motivates further research to improve the capabilities and the performances of data analysis algorithms. In this manuscript an implementation of Adiabatic Quantum Kitchen Sinks (AQKS) kernel estimation algorithm integrated with parallel quantum annealing is presented. Such combination with the concept of parallel quantum annealing allows for the solving of multiple problem instances in the same annealing cycle, thus reducing the number of rquired calls to the quantum annealing solver. The proposed workflow is then implemented using a D-Wave Advantage system and tested on a regression problem on a real Remote Sensing (RS) dataset. The obtained results are then analyzed and compared with those obtained by a classical kernel approximation algorithm based on Random Fourier Features. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |a EUROCC-2 (DEA02266) |0 G:(DE-Juel-1)DEA02266 |c DEA02266 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 1 |u fzj |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 2 |u fzj |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 3 |u fzj |
773 | _ | _ | |a 10.1109/IGARSS52108.2023.10281523 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017951/files/IGARSS_2023_Edoardo_Pasetto.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1017951 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)191143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171343 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|