Contribution to a conference proceedings FZJ-2023-04456

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Adiabatic Quantum Kitchen Sinks with Parallel Annealing for Remote Sensing Regression Problems

 ;  ;  ;

2023
IEEE

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), PasadenaPasadena, CA, 16 Jul 2023 - 21 Jul 20232023-07-162023-07-21 IEEE 784-787 () [10.1109/IGARSS52108.2023.10281523]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Kernel methods are class of Machine Learning (ML) models that have been widely employed in the literature for Earth Observation (EO) applications. The increasing development of quantum computing hardware motivates further research to improve the capabilities and the performances of data analysis algorithms. In this manuscript an implementation of Adiabatic Quantum Kitchen Sinks (AQKS) kernel estimation algorithm integrated with parallel quantum annealing is presented. Such combination with the concept of parallel quantum annealing allows for the solving of multiple problem instances in the same annealing cycle, thus reducing the number of rquired calls to the quantum annealing solver. The proposed workflow is then implemented using a D-Wave Advantage system and tested on a regression problem on a real Remote Sensing (RS) dataset. The obtained results are then analyzed and compared with those obtained by a classical kernel approximation algorithm based on Random Fourier Features.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
  3. EUROCC-2 (DEA02266) (DEA02266)

Appears in the scientific report 2023
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank

 Datensatz erzeugt am 2023-11-11, letzte Änderung am 2024-04-03


Restricted:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)