001017988 001__ 1017988
001017988 005__ 20240116084322.0
001017988 0247_ $$2doi$$a10.1109/JPROC.2023.3321433
001017988 0247_ $$2ISSN$$a0018-9219
001017988 0247_ $$2ISSN$$a1558-2256
001017988 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04458
001017988 0247_ $$2WOS$$aWOS:001103912800001
001017988 037__ $$aFZJ-2023-04458
001017988 082__ $$a620
001017988 1001_ $$00000-0002-9888-0653$$aFarshian, Anis$$b0
001017988 245__ $$aDeep-Learning-Based 3-D Surface Reconstruction—A Survey
001017988 260__ $$c2023
001017988 3367_ $$2DRIVER$$aarticle
001017988 3367_ $$2DataCite$$aOutput Types/Journal article
001017988 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702456409_27254
001017988 3367_ $$2BibTeX$$aARTICLE
001017988 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017988 3367_ $$00$$2EndNote$$aJournal Article
001017988 520__ $$aIn the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input, is of great interest to a large variety of application fields. DL-based approaches show promising quantitative and qualitative surface reconstruction performance compared to traditional computer vision and geometric algorithms. This survey provides a comprehensive overview of these DL-based methods for 3-D surface reconstruction. To this end, we will first discuss input data modalities, such as volumetric data, point clouds, and RGB, single-view, multiview, and depth images, along with corresponding acquisition technologies and common benchmark datasets. For practical purposes, we also discuss evaluation metrics enabling us to judge the reconstructive performance of different methods. The main part of the document will introduce a methodological taxonomy ranging from point-and mesh-based techniques to volumetric and implicit neural approaches. Recent research trends, both methodological and for applications, are highlighted, pointing toward future developments.
001017988 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001017988 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017988 7001_ $$0P:(DE-Juel1)162390$$aGötz, Markus$$b1
001017988 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b2
001017988 7001_ $$00000-0002-7156-2022$$aDebus, Charlotte$$b3
001017988 7001_ $$00000-0001-6093-5199$$aNießner, Matthias$$b4
001017988 7001_ $$00000-0003-0621-9647$$aBenediktsson, Jón Atli$$b5
001017988 7001_ $$0P:(DE-HGF)0$$aStreit, Achim$$b6
001017988 773__ $$0PERI:(DE-600)2040232-6$$a10.1109/JPROC.2023.3321433$$gp. 1 - 38$$n11$$p 1464 - 1501$$tProceedings of the IEEE$$v111$$x0018-9219$$y2023
001017988 8564_ $$uhttps://juser.fz-juelich.de/record/1017988/files/3D_Reconstruction_Survey.pdf$$yOpenAccess
001017988 909CO $$ooai:juser.fz-juelich.de:1017988$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017988 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b2$$kFZJ
001017988 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001017988 9141_ $$y2023
001017988 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017988 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP IEEE : 2022$$d2023-08-22
001017988 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001017988 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001017988 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001017988 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001017988 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-22
001017988 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bP IEEE : 2022$$d2023-08-22
001017988 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001017988 980__ $$ajournal
001017988 980__ $$aVDB
001017988 980__ $$aUNRESTRICTED
001017988 980__ $$aI:(DE-Juel1)JSC-20090406
001017988 9801_ $$aFullTexts