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Abstract—In the last decade, deep learning has significantly
impacted industry and science. Initially largely motivated by
computer vision tasks in two-dimensional imagery, the focus has
shifted towards three-dimensional data analysis. In particular, 3D
surface reconstruction, i.e., reconstructing a three-dimensional
shape from sparse input, is of great interest to a large variety of
application fields. Deep learning-based approaches show promis-
ing quantitative and qualitative surface reconstruction perfor-
mance compared to traditional computer vision and geometric
algorithms. This survey provides a comprehensive overview of
these deep learning-based methods for 3D surface reconstruction.
To this end, we will first discuss input data modalities, such as
volumetric data, point clouds as well as RGB, single-view, multi-
view, and depth images, along with corresponding acquisition
technologies and common benchmark datasets. For practical
purposes, we also discuss evaluation metrics enabling to judge
the reconstructive performance of different methods. The main
part of the document will introduce a methodological taxonomy
ranging from point- and mesh-based techniques, to volumetric
and implicit neural approaches. Recent research trends, both
methodological and for applications, are highlighted, pointing
towards future developments.

Index Terms—machine learning, 3D deep learning, 3D surface
reconstruction, geometric deep learning, geometry processing

I. INTRODUCTION

In the last decade, advances in artificial intelligence, in
particular in deep learning (DL) [1H3]], has been adopted by a
multitude of fields and have thus led to major breakthroughs
in science and industry alike. One of the major driving forces
behind these developments is the field of computer vision, and
its desire to “teach” machines how to recognize patterns within
image and video data. Initially, a strong emphasis was placed
on the interpretation of 2D information; however, recent ad-
vances in cost-effective scanner-based data acquisition and the
establishment of large-scale shape repositories have brought
the analysis of 3D data into focus. Still, complexity, variety
and irregularities in three-dimensional shape representations
pose significant methodological challenges.

The reconstruction of 3D surfaces of objects from different
types of input data formats, such as point clouds, depth maps,
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single-view or multi-view images, is fundamental to a number
of application fields such as computer vision, robotics, CAD,
medicine, city planning, disaster prevention, and archaeology.
One of the special use cases of 3D reconstruction is human
shape reconstructions and pose estimation from images or
videos, which is addressed by some other works [4, |5]

Despite a long research history for 3D surface reconstruc-
tion, the precise representation of three-dimensional geomet-
rical objects remains an unsolved problem, usually requiring
the reconstructed 3D surfaces to be: 1) highly resolved and
smooth, 2) water-tight, i.e., “without gaps®, 3) in accordance
with possible ground-truth, 4) robust against noisy or incom-
plete input, and 5) simultaneously densely and compressibly
represented.

Classical approaches for addressing these problems encom-
pass geometrical or simplistic machine-learning-based algo-
rithms [6, |7]. Most of these methods are not able to com-
prehensively and consistently reconstruct arbitrary detailed
3D surfaces. Well-known techniques, such as (screened) pois-
son surface reconstruction [8 9], the ball-pivoting algorithm
(BPA) [10] as well as delaunay triangulation [11} [12] still
suffer from scalability issues and struggle to reconstruct fine
details for large-scale data.

The recent successes of deep neural networks (DNNs) in
other data-driven computational problems such as classifica-
tion [13| |14], object detection [[14} |15]], and segmentation [[13}
14, [16]], have sparked interest in utilizing deep learning for 3D
surface reconstruction. Partially overlapping with the latter is
the task of shape completion, i.e., enhancing the input data
with (partially) occluded shape information.

Several reconstruction-related surveys [17, 18] present early
approaches, with [17] providing an overview of the classical
and non-deep learning-based surface reconstruction methods
from point clouds with respect to priors, and [[18] reviewing
RGB-D scene reconstruction approaches. There is another
deep learning-based surface reconstruction survey [19] with
the focus on image-based methods. Our paper, however, covers
broader data modalities and reviews recent trends in 3D
surface reconstruction including implicit neural representation
and neural radiance fields thoroughly.

Therefore, the fast-paced development of the field makes it,
however, necessary to revisit up-to-date research frequently.
The current landscape of deep learning-based 3D recon-
struction can be broadly classified into four main categories
according to their representation, as depicted in Fig. [I}
1) volumetric, i.e., representing a surface with small cuboids,
either a dense 3D voxel grid [20H25], or an octree [26-29],
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Fig. 1: Output representations of various 3D surface reconstruction approaches. DL-based 3D surface reconstruction approaches
can be broadly classified into four main categories according to their representation: volumetric, point cloud, mesh, and an
example of implicit neural representation based on signed distance function (SDF)

2) point-based [30H33]], i.e., using points to present a surface,
3) mesh-based [34-44], i.e., describing an object with vertices,
edges, and faces , and 4) implicit neural representation [45-
560], i.e., representing a shape as a neural network that takes
any (x,y, z) coordinate as input and maps it to an occupancy
or signed distance of the shape at that coordinate, or mod-
eling radiance or appearance properties of an object such as
NeRF-based approaches [57-H68].

In this survey, we present a comprehensive overview of
these state-of-the-art deep learning-based approaches to 3D
surface reconstruction. Our main goal is to provide method re-
searchers with a guide to current work and applied researchers
with a toolbox for their domain challenges. Towards this end,
we first provide a broad introduction to input data formats
(Section [M)), acquisition technologies (Section as well as
widely used benchmarking datasets (Section [[V). Section [V]
covers evaluation metrics enabling to quantitatively judge
the reconstructive performance of a method, independent of
being classical or learning-based. The main part of the survey
(Section [V1) highlights deep learning methods to reconstruct
3D surfaces using volumetric, point- and mesh-based as well
as implicit neural representation. We assume that the reader
has a general grasp of neural networks and deep learning
concepts to thoroughly follow the content. Discussion, current
trends, and challenges are highlighted in section [VII] Finally,
section summarizes and concludes the survey.

II. INPUT DATA

Various types of data representations can be used as input
for 3D surface reconstruction task. Conventional representa-
tions of 3D inputs can be divided into Euclidean and non-
Euclidean data. Examples of non-Euclidean data represen-
tations are point clouds or meshes, while Euclidean data
representations can be volumetric, RGB-D data, or multi-view
images.

Point clouds are currently the most common format of raw
3D sensor data. With the improvement of scanning devices,
leading to enhanced capabilities for capturing the surrounding
3D environment in various applications and representing it
with points, point clouds are becoming increasingly important
and available. Thus, processing this type of representation
using neural networks and deep learning techniques has at-
tracted considerable attention. From a mathematical point of

view, point clouds comprise an irregular data structure in the
form of an unordered set of points. Each point on a 3D
surface of an object can basically be defined by a vector of its
(z,y, z) coordinates, which can be inferred by various 3D data
acquisition techniques. Hence, the size of the representation
matrix of a 3D object is initially N x 3 for N points. The
matrix may also contain different properties including color,
transparency, surface normals, and other scanner information.
However, pure point clouds do not include the interconnections
between vertices. Since a point cloud is a set, its elements
are orderless, a characteristic that causes many challenges for
surface reconstruction methods. Point clouds can be easily
converted to/extracted from other data representations, such as
voxels, depth maps, or meshes, and vice versa. Furthermore,
they can be extracted from depth images by projecting the
depth value of each pixel into 3D space.

Meshes are another highly popular type of representation
for 3D objects providing detailed and connected geometries
in an efficient way. They are an irregular data embedding in
continuous space. Their basic components are vertices, edges,
i.e., pairs of vertices, and (triangluar) faces, i.e., n-tuples of
edges, forming an undirected graph.

In volumetric representations, the basic element is a voxel.
A voxel in a 3D grid is a cuboid equivalent to a pixel in 2D
space. The 3D grid, regardless of being sparse or dense, can
be fed to a neural network as the input.

An RGB-D image is the combination of an RGB image and
a depth image. It not only has RGB information for each pixel
but also includes depth information.

Multi-view images are a collection of (single-view) images
taken from different angles from an object. By putting these
images together, 3D information can be partly retrieved.

On the other hand, 2D data such as single-view RGB
images can also be considered as the input to a network for
surface reconstruction individually, in which the method is
called single-view reconstruction [69-71]], or in conjunction
with another 3D input mentioned before.

III. DATA ACQUISITION

As explained in the previous section, point clouds are the
most common format of raw 3D sensor data. 3D point cloud
data are acquired through sensing technologies that measure
distance (i.e., 3D laser scanning also known as light detection



and ranging (LiDAR)) or generated with stereo- and multi-
view image-derived systems that can be based on red, green,
blue-depth (RGB-D) cameras, stereo cameras and multiple
synthetic aperture radar (SAR) image pairs [72, [73]]. High-
quality 3D point clouds can capture the 3D surface geometries
of target objects (e.g., physical features that occupy the earth’s
surface and ocean bottom) with a spatial accuracy up to the
millimeter-level and a point density of a few thousand points
per square meter (pts/m?).

A. 3D laser scanning (LiDAR)

LiDAR is a remote sensing (RS) active technology that
uses light in the form of a pulsed laser to measure the
distance between the sensor and the object under study [74].
By measuring the time that emitted pulses take to travel to a
target, LiDAR derives 3D representations of objects. LiDAR
can also operate at different wavelengths (i.e., multispectral Li-
DAR [75,[76]) to discriminate the different spectral reflectance
of land-cover classes [77, [78|].

Depending on the platform on which the LiDAR sensor
is mounted, a 3D laser scanner is classified as a terrestrial
laser scanner (TLS or ground LiDAR), airborne laser scanner
(ALS), mobile laser scanner (MLS) and unmanned laser
scanner (ULS) [72] [73]].

A TLS uses ground-based RS systems (e.g., tripods) to
cover middle- or close-range areas with scans performed in
all directions, including upwards [[79]. Once scans of a single
zone are completed, the tripod is moved to another location
to scan from another angle or capture data from a new area.
As TLS systems are static during the acquisition process, they
reach the highest point cloud density and can prodce high-
quality 3D models of interiors of building and heritage sites.

Nevertheless, TLS systems cannot always be used, espe-
cially for scanning restricted locations that are not safe or
accessible for teams (e.g., areas of dense vegetation, unsafe
building sites, etc.). In these cases, LiDAR sensors can be
mounted on airborne platforms. ALS systems are also used to
acquire point cloud data over large areas (e.g., for 3D building
reconstruction [80]]).

When target regions are directly accessible, their structures
and objects can be reconstructed from data acquired by MLS
systems, i.e., LIDAR sensors mounted on moving vehicles
(e.g., to derive high-resolution 3D city models [81]).

Since drones and other unmanned vehicles have become
cheaper and autonomous navigation more reliable [82]], ALS
and MLS are often operated as ULS systems. Their plat-
forms are compact and lightweight, which enables them to
be exploited as first responders for disaster management. ULS
systems can make a first scan of the terrain to track movements
and changes and deliver 3D mapping of the most affected
locations [83] |84]).

B. Photogrammetry

While LiDAR performs a direct measurement of the target
object, i.e., by physically hitting a feature with light and
measuring the reflection, approaches based on photogramme-
try or computer vision theory [85] use a set of overlapping

images taken from different locations to identify isolated
points within a target. This includes airborne photogrammetry
but also satellite stereo systems, which can map larger regions
quickly. Image-based reconstruction algorithms can estimate
the relative locations of these points and eventually convert
the overlapping images into a 3D point cloud. For instance,
the structure from motion (SfM) algorithms [86] can process
multi-view images simultaneously through estimating camera
positions and orientations automatically, while dense matching
and multi-view stereovision (MVS) algorithms [87]] can gener-
ate a large volume of point clouds (e.g., large-scale scenarios,
crowded environments, etc.).

C. RGB-D Camera

Similar to LiDAR, RGB-D cameras measure the distance
between the sensor and the objects. Depth information of each
RGB pixel of the image is retrieved via a depth sensor. An
RGB-D camera generates a colored point cloud by mapping
RGB images with depth information (i.e., images include the
(z,y, z) spatial coordinates and RGB colors). In this case, the
point cloud is not the direct result of RGB-D scanning [88,89]],
since the camera generates pixel-wise depth data rather than
unstructured points. RGB-D cameras are generally cheaper
than LiDAR systems and are mostly used in indoor environ-
ments for close-range applications [90].

Structured light and Time of Flight (ToF) [91], which are
active imaging systems, serve as depth cameras and calcu-
late the distance from the sensor to an object, consequently
providing 3D information. The depth of an object can be
determined using ToF sensors by measuring the duration
of light travel from the sensor to the object and back. By
determining the time of flight of light, these sensors can
calculate the object’s distance and create a detailed depth
map, which can be directly used or easily converted to a
point cloud for instance. Structured light sensors employ the
deformation of a projected pattern to determine the distance.
By emitting a known light pattern onto a scene and examining
how the pattern changes as it interacts with objects in the
scene, these sensors are able to accurately measure the depth
information of the objects. Structured light technology-based
3D scanners are comparatively more affordable, being lighter
in weight than their laser-based counterparts as well. Due
to their higher degree of sensitivity to lighting conditions,
they may not operate well in outdoor environments or in
challenging conditions such as dusty rooms. For black or
glossy surfaces, a specific spray should be applied before 3D
scanning.

D. SAR Point Cloud

Synthetic aperture radar (SAR) is an active RS system
that can operate day and night and can penetrate clouds and
smoke. Interferometric SAR (InSAR) extends the principle
of SAR to the 3D domain [92] by taking advantage of the
physical properties of microwaves [93]. An InSAR system
compares the phase of multiple SAR image pairs acquired
from slightly different viewing angles to generate InSAR-
based point clouds. The SAR tomography (TomoSAR) and



persistent scatterer interferometry (PSI) are two major tech-
niques that generate point clouds with InSAR [73]]. They are
used to monitor terrain changes (e.g., surface deformations,
human-made structures [94]]).

E. Videogrammetry

3D point clouds can also be reconstructed using video
frames (i.e., the input data are video streams instead of a col-
lection of images). This approach is referred to as videogram-
metry [95]] and is based on the principles of photogrammetry. It
can reconstruct point clouds from the frames of a video since
their information is sequentially interconnected. Videogram-
metry approaches provide a valuable alternative to camera
images. They can be semi-automatic since the search for target
points in different images can be achieved by measuring or
tracking features of interest between consecutive video frames.
However, the reconstruction needs to be coupled with effective
frame selection algorithms (e.g., video frames are selected
based on the surveyed geometry) and robust 3D processing
methodologies [90].

IV. DATASETS

Deep learning approaches are data-demanding; thus they
require large amounts of data with high-quality 3D shapes and
ground truths. Recent developments in scanning and sensing
technologies have led to the collection of various widely used
and openly accesible benchmarking datasets. These datasets
are used to train and evaluate the performance of deep learning
methods for different tasks, including 3D reconstruction. In
this section, we summarize some of the most popular datasets,
which can be used by different 3D deep learning approaches,
with a focus on 3D reconstruction. Table[[|offers a comparative
overview of these datasets.

« ShapeNet [97] is a richly-annotated, large-scale synthetic
dataset of 3D shapes represented by 3D computer-
aided design (CAD) models of objects, providing
roughly 3,000,000 shapes. This dataset has been used
for computer graphics and vision purposes. The full
ShapeNet dataset is not yet publicly available. It
consists of several subsets, including ShapeNetCore
and ShapeNetSem. ShapeNetCore contains single clean
3D shape that covers 55 common object categories
with about 51,300 unique 3D shapes. ShapeNetSem is
a smaller, more densely annotated subset, containing
12,000 shapes of a broader set of 270 categories.
For each shape in ShapeNet, annotations such as its
geometry, texture, parts, symmetry planes, voxelization,
screenshot, category, alignment, and size are available.
The final representation of an object in this dataset
can be a 3D mesh. The 3D shapes are stored in the
Wavefront object file format (.ob7j), which describes
the surface geometry of a 3D shape and includes
vertices and faces, along with material template library
(.mtl) files used to store material definitions. An
.mt1l file is a companion file for one or more .obj
files which describes some surface appearance properties.

PartNet [98] is a dataset of 3D objects, built on top of
ShapeNet with fine-grained, hierarchical, and instance-
level 3D part annotations. The dataset comprises 573,585
part instances of 26,671 ShapeNet 3D shapes in 24
indoor object categories in an attempt to enable part-level
understanding of 3D objects.

ModelNet [99] is a large-scale CAD model synthetic
dataset. It includes a comprehensive and clean collection
of 127,915 CAD models with 662 object categories and
consists of two subsets, ModelNet10 and ModelNet40
with 10 and 40 classes respectively. ModelNet10 has
also been annotated with the orientation of the CAD
models, which are given in the Geomview object file
format (.off). The final representation of this dataset
can be a mesh.

KITTI [100, [101]] is a real-world urban scene dataset
composed of images and point clouds. The dataset was
acquired by the autonomous driving platform Annieway
while driving around the city of Karlsruhe. Evaluation
benchmarks were developed for several computer vision
and robotic tasks such as stereo, optical flow, visual
odometry, SLAM, 3D object detection and 3D object
tracking. Semantic KITTI [102]], which is based on
KITTI, provides point-wise annotations for semantic
segmentation and semantic scene completion purposes.
The dataset comprises 28 classes including classes for
non-moving and moving objects.

ScanNet [103] is a 3D reconstruction dataset of
indoor scenes consisting of 2.5 million frames (views)
derived from more than 1500 RGB-D scans. 3D
camera poses, surface reconstructions, and instance-level
semantic segmentations are also provided. All scans are
reconstructed into 3D mesh models. The data is stored
in polygon file format (.ply).

Matterport3D [104] is another dataset facilitating RGB-
D scene understanding. It captures 10,800 panoramic
views from 194,400 RGB-D images of 90 building-
scale scenes. The dataset is annotated with surface
reconstructions as textured meshes, camera poses, and
2D/3D semantic segmentations.

NYU depth v2 [103] introduced an annotated dataset of
1,449 RGB and depth images, consisting of 464 diverse
indoor scenes. These images were acquired by RGB and
depth cameras from Microsoft Kinect.

Sun3D [[106] is a real-world large-scale dataset of
RGB-D frames with semantic object segmentations and
camera pose used for scene understanding. It consists of
415 sequences captured for 254 different indoor spaces
in 41 different buildings.

SUN RGB-D [[107] is a dataset containing over 10,000
RGB-D images from NYU depth v2 [105], Berkeley



B3DO [108]], and SUN3D [106] datasets. These images
are annotated with 2D segmentations (146,617 2D
polygons), 3D object box (64,595 3D bounding boxes),
3D room layout, 3D object orientation, and scene
category for each image.

Sydney Urban Objects dataset [109]] is a point cloud
dataset that contains 631 scans of 26 different object
classes including vehicles, pedestrians, trees, and
signs taken in the city of Sydney. Each object’s
information is available in three file formats, ASCII
CSV format (.csv), binary-packed CSV (.bin), and
meta information files (.meta).

ABC dataset [110] is a CAD model dataset with one
million 3D models. Koch ef al. [[110] offered a pipeline
that is able to convert these CAD models into other
representations in order to be processable by deep
learning techniques. These models are provided in .obj
and 3D Systems’ stereolithography CAD file format
(.stl).

Semantic3D.net [111] is a large labelled 3D point cloud
dataset of natural scenes with over four billion points in
eight class labels. These dense point clouds, which were
recorded by terrestrial laser scanners, depict urban and
rural outdoor terrestrial scenes.

H3D [112] is a high-resolution real-world dataset
containing both point clouds (H3D(PC)) and meshes
(H3D(Mesh)) of airborne LiDAR data, and can be used
for semantic segmentation in geospatial applications.
The point clouds are classified in eleven classes and
labeled 3D textured meshes can be derived from them.

3D Furnished Rooms with layOuts and semaNTics (3D-
Front) [[113]], is a synthetic dataset of indoor CAD model
scenes, containing 18,968 rooms with 3D objects. The
individual objects are taken from 3D-FUTURE [114].
The CAD models are stored in .obj and .mt1 file
formats.

3D Furniture shape with TextURE (3D-FUTURE) [114]]
is a repository of 3D furniture shapes in the household
scenario enriched with 3D and 2D annotations. It
includes 20,240 synthetic images of 5,000 different
rooms. Stylistic and texture details of individual objects
are provided. The 3D models are stored in .ob7j file
format.

SensatUrban [115]] is a dataset for urban-scale point
cloud understanding. It covers 7.6 km? of urban areas
in Birmingham, Cambridge, and York cities. The point
clouds are obtained from high-resolution aerial images
which are captured by the UAV mapping system.

Stanford 3D Scanning Repository [[116] is a surface
reconstruction repository containing some famous 3D

models such as the Stanford bunny, happy Buddha,
dragon, and armadillo in . ply format. These 3D models
and some others also exist in the Large Geometric Models
Archive [117].

V. EVALUATION METRICS

Evaluation metrics are used to assess the performance
of deep learning models [1H3]. Various metrics have been
proposed for testing deep geometric learning methods.
Some of the common distance metrics used for surface
reconstruction methods are Chamfer Distance, Earth Mover’s
Distance, and Hausdorff Distance, that all measure the
discrepancy between two sets, as illustrated in Fig. [2| Another
common metric for evaluating 3D reconstruction solutions
is the Intersection over Union (IoU). Furthermore, the
formulas in this section denote false positives, false negatives,
true positives, and true negatives as FP, FN, TP, and TN
respectively.

e The Chamfer Distance (CD) [30] measures the distance
between two different surfaces or sets of points by first
calculating the distances between predicted points and
their ground truth nearest neighbors, and then averaging
all of these distances. The calculated value represents
the dissimilarity between predicted output and ground
truth. The lower the value, the better the result. Let S,
and Sy be two point clouds that represent the predicted
and ground truth shapes, and = and y be two points
that belong to these point clouds respectively. Then, the
Chamfer Distance is defined as:

dep(Sh,52) = Z mm |z —yll3
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e The Earth Mover’s Distance (EMD), also known as the
Wasserstein distance in mathematics and optimization
theory) [30, [118, |119], is based on solving an op-
timization problem, called the transportation problem.
The transportation problem attempts to find the least-
expensive flow of goods from suppliers to consumers,
while satisfying the consumers’ demand. For calculation
of the EMD of two point sets, each point in one set
should be assigned to a unique point in the other set to
fulfill optimal assignment. EMD uses bijection between
the points that minimizes the total sum of the pair-wise
distances. Consider S; C R® and S, C R3 to be
two point sets of equal size, representing the predicted
and ground truth shapes, respectively. The EMD [30] is
defined as:

(D
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where ¢ : S7 — So is a bl]eCtIOI‘l.

e The Hausdorff Distance (HD) considers the farthest and
largest dissimilarity between predicted output and ground



TABLE I: A comparison of benchmark datasets

Name Count/Size Dataset Representation  Scene Type Source DL Tasks
Type
ShapeNetCore 51,300 3D models  Synthetic Mesh Indoor and CAD model Shape recognition,
from 55 object cate- outdoor objects reconstruction,
gories retrieval
ShapeNetSem 12,000 3D models  Synthetic Mesh Indoor and CAD model Shape recognition,
of 270 object cate- outdoor objects reconstruction,
gories retrieval
PartNet 573,585 part  Synthetic Mesh and Indoor object parts CAD model Part-level understanding
instances of 26,671 point cloud
3D ShapeNet
models in 24 object
categories
ModelNet 127,915 3D models  Synthetic Mesh Indoor and CAD model Recognition,
with 662 object cat- outdoor objects reconstruction,
egories generation,
and completion
KITTI Around 49,000 Real-world Image and Outdoor RGB and Stereo,
frames from 5 point cloud LiDAR optical flow,
categories visual odometry,
SLAM,
3D object detection,
and object tracking
Semantic 23,201/20,351 scans  Real-world Point cloud Outdoor LiDAR (MLS) Semantic segmentation
KITTI with 4549 points and scene completion
from 28 classes
ScanNet 2,5 million frames Real-world Image and Indoor RGB-D Sensor Object classification,
from 1500 RGB-D mesh voxel labeling,
scans model retrieval,
and reconstruction
Matterport3D 10,800 views from  Real-world Image and Indoor RGB-D Sensor Scene understanding,
90 scenes mesh normal prediction,
classification,
semantic segmentation,
and reconstruction
NYU depth v2 1449 RGB-D  Real-world Image Indoor RGB-D Segmentation
images  consisting
464 diverse scenes
across 26  scene
classes
Sun3D 415 sequences cap-  Real-world Image and Indoor RGB-D sensor Scene understanding,
tured for 254 differ- point cloud reconstruction,
ent spaces in 41 dif- and segmentation
ferent buildings
Sun RGB-D 10,335 RGB-D im- Real-world Image Indoor RGB-D sensor Scene understanding,
ages from 47 scene semantic segmentation,
categories consisting object detection,
about 800 object cat- orientation,
egories and classification
Sydney urban 631 scans from 26  Real-world Point cloud Outdoor LiDAR Classification
objects object categories and recognition
ABC 1 million 3D models  Synthetic Mesh Indoor CAD model Feature detection,
shape reconstruction and
surface normal estimation
Semantic3D 4 billion points in 8  Real-world Point cloud Outdoor LiDAR (TLS) Classification and
class labels semantic segmentation
H3D Around 73 million  Real-world Point cloud and  Outdoor LiDAR Semantic segmentation

points and 3,5
million faces in 11
classes

mesh




3D-Front 18,968 rooms with  Synthetic Mesh
13,151 furniture ob-
jects from 31 scene

Indoor CAD model 3D scene understanding,

reconstruction,
and segmentation

categories
3D-FUTURE 20,240 images of  Synthetic Mesh Indoor CAD model 2D instance segmentation,
5,000 different 3D object pose estimation,
rooms image-based 3D shape re-
trieval,
3D reconstruction from a
single image,
and texture recovery for
3D shape
SensatUrban 4 billion points in 13 Real-world Image and Outdoor UAV Photogramme-  Urban-scale point cloud
semantic class labels point cloud try understanding

truth. A point in one set that has the worst mismatch and
maximum distance from its nearest point in the other set,
determines Hausdorff Distance.

dpp(S1, S2) = max{ max min |l — wjll;
7 J

) 3)

max min i — yjll}

The metric is, however, not very robust towards outliers.
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Fig. 2: Visualization of Chamfer Distance, Earth Mover’s
Distance, and Hausdorff Distance metrics. Red dots and blue
dots belong to two different point sets and each of these
metrics measures the distance between these two sets in a
unique way.

e The Intersection over Union (IoU), also known as the
Jaccard Index, is often used as quality measure in object
detection and semantic segmentation. As illustrated in
Fig.[3] it is defined as the overlap between the prediction
and the ground truth, divided by their union. The lower
the IoU, the worse the prediction result.

Prediction Ground-truth
— TP
IoU = = TP+FN+FP
Prediction Ground-truth

Fig. 3: Visual intuition of the JoU metric.

IoU can also be easily utilized for evaluating voxel-based
representations and specifying the overlap between a re-

constructed 3D voxel and its voxelized ground truth. For
volumetric approaches, IoU can be formulated as [20]:

ik PGk > ODI(WY5m0)]
ikl (PG > 1) + 1Y gr))]
where I(.) is an indicator function, p(i,j,k) is the
predicted voxel occupancy probability, ¢ is a voxelization

threshold, and y(i,j, k) is the ground truth occupancy
probability.

IoU =

“4)

In classification problems, precision is the number of
predictions correctly assigned to one label, i.e., true pos-
itives, divided by the number of all predictions assigned
to that label, including those identified incorrectly, i.e.,
false positives (Fig. [).
. TP

Precision = TP+ FP (®)]
The Average Precision (AP) is computed by averaging
all precision values of all positively labeled samples [99].
The mean Average Precision (mAP) is the average of AP
calculated over all classes. For point clouds, precision is
calculated as the percentage of predicted points that are
close to the ground truth surface, i.e., with the distance
less than a specific threshold [120]].

Recall or sensitivity denotes the ratio between the number
of predictions correctly assigned to one class (TP) and
the actual number of elements in that class, including
those that are incorrectly assigned to the other label (FN)
(Fig. ). It is a measure of how well a DL model can find
all labels of one class:
TP

Recall = TP PN (6)
For point clouds, recall is calculated as the percentage
of points on the ground truth that are close to the
predicted surface, i.e., having a distance less than a
specific threshold [120].

The F; score, also known as balanced F-score, F-measure
or Dice Similarity Coefficient (DSC), is the harmonic
mean of precision and recall. The higher the value, the
better the result.
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Fig. 4: Confusion matrix for binary classification.

(Recall x Precision)

F =2
Lscore * (Recall + Precision)

)

For point clouds, precision and recall can be calculated
by checking the percentage of points in one point cloud,
for instance the predicted point cloud or the ground
truth, that can find a neighbor from the other point
cloud within a threshold [38]. Intuitively, F-score can
be interpreted as the percentage of points that were
reconstructed correctly [[120].

In classification problems, the Accuracy (Acc) is the ratio
between correct predictions and all predictions, i.e., it
shows how much of the data is labeled correctly.

(TP+TN)
(TP+FP+FN+1TN)
However, it is not an appropriate metric for imbalanced

datasets as it does not take into account the distribution
skew [[121].

Accuracy =

®)

Normal Consistency [45]] is defined as the mean absolute
dot product of the surface normal of each point, i.e., a
perpendicular vector to the surface at the given point, in
one mesh and the surface normals of its nearest neighbors
in the other mesh.

NC(M, M) = NormalConsistency(M, M)

1

= S0H] Sy (@) D) g
1

+ 2A0M] Jonr [(n(m1(q)),n(q)))|dg

where M and &M are predicted and ground truth mesh
surfaces, n(p) and n(q) are unit normal vectors on these
mesh surfaces respectively, 72(p) and 71 (q) indicate the
projections of p and g on the aforementioned surface
meshes respectively, and (.,.) implies the inner product.
The higher the normal consistency, the better the result.

The Jensen-Shannon Divergence (JSD) [31] measures
the similarity between marginal point distributions. It
is mainly based on the Kullback-Leibler (KL) diver-
gence [122]. Considering two point clouds and a voxel
grid that discretizes 3D space, the number of points

within each voxel from the predicted point set P and the
ground truth point set G are counted. The JSD between
the obtained empirical distributions (Pp,Pg) is calculated
as:

1
JSD(Pp||P) = 5 Drcr.(Pp||M)

h (10)
+ §DKL(PGHM)

1
where M = §(Pp + Pg).

Coverage [31] quantifies the fraction of points in the
ground truth set S, that are matched to points in the
predicted set S7. A match happens when a nearest neigh-
bor in the ground truth set is found for each point in the
predicted set.

DX, Y)|XeS
Coverage(Sy,S2) = argmin (X, V)X € 8
YeSe |52|

(1)

where D(.,.) or “nearness” is measured using distance
metrics such as CD or EMD. High coverage indicates
that most of the points in Sy are roughly present within
S1. However, this does not assess the quality of the
predicted set. Achieving a perfect coverage is possible,
despite large distances between the predicted point set
and the ground truth set [33]].

Minimum Matching Distance (MMD) [31} [33]] is a com-
plement to the coverage metric. It measures the distance
between every point in the ground truth set Sy and its
nearest neighbor in the predicted set S; and averages
these distances in order to evaluate the quality of the
predicted set.

MMD(S;,Ss) = |52‘ Z min D(X,Y)  (12)

XGSl

where D(.,.) is measured using distance metrics such as
CD or EMD.

Light Field Descriptor (LFD) [[123]] measures visual sim-
ilarity between 3D shapes. In short, LFD assumes that a
3D object can be represented as a number of 2D views;
therefore, if two 3D models are similar, they also look
alike from all views. A light field, which is used in image-
based rendering, is defined as a five dimensional function
that represents the radiance at a given 3D point along
a given direction. To extract LFD for a 3D model, a
set of image renderings (silhouettes) are obtained from
different angles. These rendered images are acquired
using cameras located on the vertices of a fixed regular
dodecahedron, i.e., 20 vertices, that surrounds the 3D
model. Each of these silhouettes is then encoded both by
a region shape descriptor (Zernike moments descriptor)
and a contour shape descriptor (Fourier descriptor) for
similarity comparisons. A visual representation can be
found in Fig.[5] LFD is a good visual similarity metric for



3D surfaces; however, by rendering merely the silhouette
of the shape without lighting, LFD can only observe the
condition of this shape on the edge of the silhouette [49].
D 4, which is the dissimilarity between two 3D models,
is calculated as:

10
Da(L1,Ly) =min Y d(lig, o), i=1.60 (13)
k=1

where ¢ indicates different rotations between camera
positions for two 3D models and I1k and Ik are
corresponding images for ¢-th rotation. The dissimilarity
between two images is denoted by d.

- (C)]

Fig. 5: Comparison of Light Field Descriptors between two
3D models, a pig and a cow (a). First, rendered images are
extracted for both 3D models. Then, as illustrated in (b), all
2D images from the same views are compared and a similarity
value for this camera angle is obtained. Next, a different map-
ping between rendered images of the two 3D models is chosen
and thus, another similarity value is extracted, as illustrated in
(c). Eventually, the rotation of camera positions with the best
similarity is found, as shown in (d). The similarity between
the two 3D models is attained by summing up the similarities
from all the corresponding images [123].

VI. DEEP LEARNING-BASED 3D SURFACE
RECONSTRUCTION

Deep learning-based 3D surface reconstruction approaches
can be broadly classified into four main categories according
to their representation, as illustrated in Fig. [6}

o Volumetric representations define a surface via small
cuboids, either a dense 3D voxel grid [20H25], or an
octree [26429]. Dense voxels are the 3D analogue of a
pixel in 2D space, i.e., a cubical element in a regularly
spaced 3D grid. Therein, octrees are obtained by recur-
sively splitting 3D space into octants, i.e., eight equally-
sized cells. In this data structure, only cells containing
information by being close to the surface boundary, are
subdivided. Neighboring cells that have the same value
do not need to be subdivided and all of these areas can
be represented by a single large octree cell. In order to
achieve finer details, the space can be further partitioned
into smaller octree cells, that is the main difference
between a regular voxel grid and an octree.

« Point-based representations utilize the constituting sur-
face points to mark a shape [30-33]. The entire surface
is described through an unordered set of (x,y, z) coordi-
nates.

e Mesh-based representations describe an object through
vertices, edges, and faces [3444]. Existing approaches
can be mainly divided into three categories:

— Patch-based approaches attempt to reconstruct the final
shape by learning a group of mappings from 2D
squares to 3D patches and putting together these small
patches.

— Deformable template-based approaches deform the ver-
tices of a template mesh with predefined interconnec-
tions and predict the final shape based on it.

— Other mesh generation methods are so unique, yet
singular, that they are sorted into a catch-all category.

« Implicit neural representations describe a shape as a neu-
ral network that takes any (z, y, z) coordinate as input and
maps it to occupancy or signed distance value [45H56],
or model radiance or appearance properties of an object
such as NeRF-based approaches

Accordingly, we summarize and discuss the existing lit-

erature for deep learning-based 3D surface reconstruction
methods based on these categories in the following sections.
Furthermore, we depict the architecture of different approaches
with a unique color scheme in these sections. In the figures,
data units are represented in red, trainable units in blue, and
computing units in orange.

A. Volumetric Representations

Volumetric approaches in neural networks for 3D surface
reconstructions rely on describing the object through a grid.
By extending the concept of 2D convolutions to 3D, a grid
can be easily processed using learning-based approaches such
as neural networks.

Volumetric methods characterize 3D object data using 1) a
regular 3D voxel grid, i.e., dense voxels, 2) or an octree, i.e.,
sparse voxels.
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Fig. 6: A taxonomy of learning-based reconstruction approaches based on 3D shape representation.

Analogously to the concept of a pixel in the 2D world,
a voxel is a cubical element in a regularly spaced 3D grid.
An octree can be built by recursively subdividing the space
into octants until a pre-defined maximum depth is reached.
Additional information can be stored in cubic cells (both
in dense and sparse voxels) to help reconstruct surfaces, as
follows:

1) signed distance functions (SDF) express the distance
between the center of each voxel and the closest point on
the surface of an object. They can be stored in a cuboid
by calculating distance functions (DF) [25]|124]. SDFs, a
variation of distance functions, purely calculate the signed
distance value for each cell. Truncated signed distance
functions (TSDF) [[125] go beyond the SDF definition by
specifying a truncation threshold for SDF values stored
in cuboids, i.e., assigning a fixed value to voxels that are
not near enough to the surface and their signed distance
values exceed the defined threshold.

2) occupancy or indicator functions indicate whether a
cuboid is occupied by the surface of an object or not.

Learning voxel-based SDF representations is usually
rather complicated compared to occupancy representations,
since dealing with distance functions in 3D space is more
difficult than simply classifying a voxel as occupied or
unoccupied [45]. However, voxel-based SDF approaches
provide the advantage of generating smoother surfaces
compared to occupancy grid-based approaches. A general
disadvantage of voxel-based methods is their resolution
limitation by the underlying 3D grid. Mesh extraction
approaches, such as the classical Marching Cubes
algorithm [126]], can be used to infer a mesh from the
final output of these methods.

1) Dense Voxels:

Majority of approaches with dense voxel-based
representation voxelize the 3D space in order to apply
3D Convolutional Neural Networks (CNNs) on a grid
directly. In this section, we first present pioneer studies that
applied CNNs to a 3D representation, i.e., dense voxels,
for shape classification and then introduce 3D surface
reconstruction and shape completion approaches that use
dense voxels.

Volumetric CNNs for 3D Shape Classification

Several studies have focused on solving shape classification
and recognition tasks using dense voxels [21l [23| (99| (127
130]. One of the pioneers in building deep learning models in
3D world is 3D ShapeNets, as proposed by Z. Wu et al. [99].
They were among the first authors to show the application
of CNNs to a 3D representation. The introduced architecture
uses a convolutional deep belief network for representing a 3D
shape as a probabilistic distribution of binary variables on a 3D
voxel grid. 3D ShapeNets is able to conduct several tasks, from
shape recognition to reconstruction and completion, as well as
next-best-view prediction. The DL model takes a single-view
depth map of the physical object as input, and converts it into
a volumetric representation. The occupancy status of each cell
is specified by classifying it as either free space, unknown
space or observed surface. Next, a deep belief network is
trained on this grid of size 303. In terms of accuracy, precision,
and recall metrics, 3D ShapeNets outperforms several baseline
methods for 3D shape classification and retrieval, such as
Light Field descriptor (LFD) approach [[123|] and Spherical
Harmonic descriptor (SPH) [131]], even though it utilizes a
mesh at lower resolution. It was further shown that the DL
model is able to automatically learn general 3D features.

Maturana et al. introduced VoxNet [127] which voxelizes
input point cloud data and processes the grid with a 3D CNN
for object recognition tasks. The authors utilized a volumetric
grid for representing the estimated spatial occupancy, and a
3D CNN for extracting features and predicting class labels
directly from the occupancy grid of size 323. Each point in the
input point cloud is mapped to discrete volume coordinates.
The resulting voxel volumes are fed to the proposed shal-
low neural network. VoxNet has fewer parameters compared
to 3D ShapeNets [99], i.e., less than one million vs. over
12.4 million parameters, while achieving 8% and 6% higher
average accuracy for ModelNetl0 and ModelNet40 datasets
respectively. However, in both these methods, the memory and
computational costs increase cubically with respect to the input
resolution.

ORION [[128]], which is based on VoxNet [[127], studies
the importance of object orientation in 3D object recognition
results. Unlike VoxNet and 3D ShapeNets [99], which augment
training data with rotations of the objects to achieve rotational
invariance of the network, ORION seeks to predict object
orientation. The proposed network uses 3D convolutional net-



works for 3D recognition and adds an auxiliary orientation loss
for better classification performance. By forcing the network
to predict object orientation in addition to class label during
training, more accurate classification results can be achieved at
test time. The ORION network is shallower than the proposed
method by Brock et al. [21] that we discuss further down this
survey, leading to fewer trainable parameters.

Some studies utilize multi-view CNNs for analyzing a 3D
shape. Multi-view CNNs work in three steps: 1) rendering
a 3D shape as a collection of images from different
viewpoints, 2) inferring features for each viewpoint, and
finally 3) fusing these features across various views. In order
to minimize the performance gap between multi-view CNNs
and volumetric CNNs, Qi et al. [[129] suggested two new
network architectures of volumetric CNNs. One architecture
focuses on local regions, while the other uses anisotropic
probing kernels for convolving a 3D cube, then projecting
3D volumes to a 2D image and afterwards applying image-
based CNNs for classification. The proposed CNNs surpass
volumetric CNN-based methods, such as 3D ShapeNets [99]]
and VoxNet [127]. Moreover, their classification accuracy
competes with some multi-view-based methods, such as
MVCNN [132], LFD approach [123]], and SPH [131]], given
the same 3D resolution of 303.

3D Surface Reconstruction and Shape Completion using
Volumetric Representation

In this section, we review the studies that leverage dense
voxel representations for 3D surface reconstruction [20H23[]
and 3D shape completion [24} 25]]. C. B. Choy et al. [20] in-
troduced a framework, 3D Recurrent Reconstruction Network
(3D-R2N2), for both single- and multi-view 3D reconstruction.
This method takes one or more RGB images of an object from
arbitrary viewpoints as input and outputs a 3D occupancy grid.
The proposed network is composed of three main modules,
as shown in Fig. [7t 1) a 2D convolutional neural network
(2D-CNN), which encodes input into a low-dimensional fea-
ture vector, 2) a 3D convolutional long short-term memory
(LSTM) [133], in which the 3D-LSTM units keep their
previous cell states or update them, whenever there are more
observations, i.e., multi-view images, available, and 3) a 3D
deconvolutional neural network (3D-DCNN) that decodes the
3D-LSTM hidden states into a higher resolution and produces
final occupancy grid.

In the LSTM module, 3D-LSTM units are located in a
grid structure in such a way that each of them focuses on
reconstructing a particular part of the output. Two versions
of 3D-LSTMs, 3D-LSTMs without output gates and 3D
gated recurrent units (GRUs), were tried out in 3D-R2N2,
in which the latter achieved better results. The output size
is 323, Although the generation of detailed and thin parts of
the objects and reconstruction of objects with high texture
levels are very challenging, 3D-R2N2 performs better than
the category-specific approach proposed by Kar et al. [134],
which learns 3D shapes using camera viewpoint estimations
together with object silhouettes, in single-view reconstruction
using real-world images. 3D-R2N2 is also able to produce

accurate outputs compared to the Multi View Stereo (MVS)
method [135]] in multi-view reconstruction.
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Fig. 7: Overview of 3D-R2N2 network [20]. The input to this
network is one or more RGB images from arbitrary viewpoints

and the output is a 3D occupancy grid. The main modules of
3D-R2N2 are an encoder, a 3D LSTM, and a decoder.
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Brock et al. [21]] inverstigated generative and discriminative
voxel modeling with deep ConvNet architectures. In short,
their method presents a voxel-based variational autoencoder
(VAE) [ 136} 137] for reconstruction and interpolation, a graph-
ical user interface for investigating the latent space of autoen-
coders, and a deep voxel-based convolutional neural network
for object classification. The output size of the network is
323. The voxel-based VAE learns to reconstruct features of
an object, attaining acceptable reconstruction accuracy. It
further facilitates the transition from one object to another by
interpolating between their reconstructions. The neural model
has significantly fewer parameters than FusionNet [130], i.e.,
18 million as opposed to 118 million. Nevertheless, it achieves
competitive results compared to ORION [128]] considering that
ORION uses orientation augmentations to improve classifica-
tion.

The TL-embedding network [22] learns a vector represen-
tation of an object, which is both generative in 3D, i.e.,
able to reconstruct objects in 3D space from this represen-
tation, and predictable from 2D images, i.e., able to extract
this representation from images. As shown in Fig. [§ this
architecture is composed of a convolutional network, which
brings about the predictability, and an autoencoder, that results
in generativeness. It generates outputs with 202 resolution.
This method captures stylistic details better than the method
proposed by Kar et al. [134].

J. Wu et al. introduced a framework, called 3D generative
adversarial network (3D-GAN) [23]], which generates novel
volumetric 3D objects from a probabilistic latent space.
3D-VAE-GAN, an extension of 3D-GAN, provides the
ability to reconstruct surfaces from input images. For
generation and recognition of 3D objects, this method



utilizes both general-adversarial modeling [138 [139] and
volumetric convolutional networks [99, [127]], as illustrated
in Fig. O] Furthermore, it fuses 3D-GAN with a variational
autoencoder [[136] for 3D object reconstruction from a single
2D image. The resolution of its final output can reach
up to 643. The classification accuracy of this network is
roughly similar to volumetric learning-based approaches
such as VoxNet [[127] and ORION [128]], but is lower than
the method proposed by Qi et al. [[129]. It shows higher
average precision for voxel prediction compared to the work
by Girdhar et al. [22] in single image 3D reconstruction
task. However, 3D-VAE-GAN usually creates a noisy and
incomplete output from an input image. Studies conducted
by J. Wu et al. [|140] showed that ultimately, training GANs
together with recognition networks can lead to high instability.
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Fig. 8: The TL-embedding network [22]. During training, two
types of input are fed to the network: 2D RGB images as the
input to ConvNet at the bottom, and 3D voxel maps as the
input to the autoencoder on the top. The network outputs a
3D voxel map.

Stutz et al. [25]] introduced a learning-based approach with
weak supervision for 3D shape completion. It takes a 3D
bounding box and an incomplete point cloud as input and
predicts the complete object shape. The completion process
is done in two steps: 1) a shape prior is learned, i.e., a
variational auto-encoder (VAE) is employed to learn a 3D
shape model on synthetic data, encoding shape models in a
dataset using occupancy grids and SDFs at 24 x 52 x 24
resolution, and 2) shape inference is performed. For this, 3D
shape completion is considered as a maximum likelihood (ML)
problem. The authors used the amortized maximum likelihood
(AML) approach that works over the lower-dimensional latent
space z from the first step. It keeps the pre-trained decoder
from the previous step fixed and adds a new encoder. The
encoder is trained without supervision, i.e., without using
explicit labels, and learns to directly predict ML solutions from
incomplete input observations using maximum likelihood loss.
The presented method was shown to be faster than a fully-
supervised baseline while using 9% or less supervision, while
being able to produce competitive results.

Dai et al. [24]] fused a volumetric deep neural network with
a 3D shape synthesis procedure to complete partial 3D inputs.
Their approach generates the output in two major stages:
1) a shape prediction method, which predicts a volumetric

grid with 323 resolution as a low-resolution global structure
of the input. The proposed network, 3D-Encoder-Predictor
Network (3D-EPN), consists of 3D convolutional layers and
attempts to predict distance field values for missing data, and
2) a patch-based 3D shape synthesis method, which employs
a synthesis procedure to improve local details and create a
high-resolution output using CAD model priors. Given the
predicted coarse output from the first stage, the authors carried
out a search for similar 3D shape models in the ShapeNet [97]]
database. Based on the results, they sought to find similar
local patches in these shape models for the purpose of local
detail synthesis. The resolution of the final voxel grid is
1283. Without the synthesis step, 3D-EPN provides only low
resolution and is unable to predict local details and fine
structures. Nevertheless, it outperforms 3D ShapeNets [99] as
well as poisson methods [8] |9].

In another approach, Dai et al. suggested Sparse Generative
Neural Networks (SG-NN) [141], which is a self-supervised
scene completion approach that accepts an incomplete RGB-D
scan as input and predicts a high-resolution 3D reconstruction
while also inferring unseen, missing geometry. The self-
supervised nature of this technique allows for training entirely
on real-world, partial scans. This eliminates the requirement
for synthetic ground truth. Self-supervision is achieved by re-
moving some frames from a given (incomplete) RGB-D scan,
resulting in an even more incomplete input; this input is used
to create an input-target pair (original scan is considered as the
target scan). The difference in partialness is then correlated
in this input-target pair while regions that have never been
observed are masked out during training. Despite the fact that
fully complete scenes are not used as samples during training,
this approach generates high levels of completeness by learn-
ing to generalize completion patterns across the training set.
Dai et al. also proposed a sparse generative neural network,
a fully-convolutional encoder-decoder architecture, capable of
predicting high-resolution final geometry as a sparse TSDF
representation. This end-to-end formulation generates a 3D
scene in a coarse-to-fine manner. SG-NN is built upon sparse
convolutions [142] that operate only on surface geometry.
This self-supervised approach produces more accurate and
complete scenes in comparison to a fully-supervised approach
such as 3D-EPN [24].

In general, voxel-based methods encounter a number of
difficulties. Information loss may occur due to discretization
and transformation of input data to coarse voxels. Moreover,
cubic growth in memory limits the resolution and the
overall computational demands bring about coarse final
outputs. Generating higher resolution surfaces requires deeper
networks. However, the network depth is constrained by the
available GPU memory. Therefore, it may affect the ability of
CNNs with volumetric decoders in producing high resolution
outputs [[143]].

2) Octrees:
Dense voxel representations are associated with a number of

challenges regarding resolution, memory, and computational
complexity. In many cases though, the 3D shape surface
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occupies only a small portion of 3D space. Hence, octrees
mark a popular approach for partitioning space, as they
allow for the 3D data to be stored in a sparse structure [[144,
145]]. For octree construction of a 3D shape, a bounding
cube is created around the entire shape. This bounding cube
will be recursively subdivided. In each step, all cuboids
which are occupied by a shape boundary, are traversed and
each of them is divided into eight smaller, equally-sized
cuboids. However, in order to enable CNN operations on
an octree, this data structure needs to be updated and
slightly changed, which leads to complex implementations
while the resolution is still limited by the underlying 3D
grid [45]. Hence, convolutions and pooling to octrees are
applied similarly to CNN operations on dense voxels with the
main difference being that the elementary operand is an octant.

OctNet

Riegler et al. presented OctNet [146], which enables the
usage of high-resolution inputs for deep learning purposes.
OctNet is based on a 3D convolutional neural network that can
be applied to a special form of octree data structure to learn
representations from high-resolution 3D data. Vanilla octree
implementations might encounter data access speed issues in
high resolution (high recursion-depths) octrees. On the other
hand, for convolutional network operations such as convolu-
tion or pooling, it is crucial to have frequent access to different
data elements, such as cell neighbors. In order to provide faster
data access and reduce cell traversal time, the authors proposed
a hybrid grid-octree data structure. They used a shallow octree,
which is an octree with maximum depth D = 3, as a basic
building block. Several of these shallow octrees are stacked
in a regular grid structure to cover the whole volume. Input
resolution effects of this representation were evaluated on three
different task: 3D classification, 3D orientation estimation of
unknown object instances, and semantic segmentation of 3D
point clouds. For high resolution inputs in the 3D shape clas-
sification task, OctNet runs faster and requires less memory as
opposed to DenseNet, a densely voxelized version of OctNet.
In general, both OctNet and DenseNet perform better than a
shallow network such as VoxNet [[127], verifying that network
depth is of great importance.

OctNet does not generate an octree structure, and this
structure has to be known in advance for both input and output.
In classification and semantic segmentation tasks, this does not
comprise a problem. However, learning volumetric structure of

objects and scenes and being able to construct them is crucial
in generative tasks such as reconstruction, generation, and
completion, since the input and output partitioning structure
might be different. OctNetFusion [26] proposes a learning-
based approach, which learns to partition the space and can
predict a SDF or a binary occupancy map. The network takes
one or more 2.5D depth maps as input. To reconstruct precise
and complete 3D outputs, it fuses depth information from
different viewpoints into a coarse volumetric grid. Then, this
volumetric grid (grid-octree structure) is fed to the OctNet-
Fusion network architecture, consisting of encoder-decoder
modules. The network determines whether a cell should be
subdivided or not in a coarse-to-fine manner. The output reso-
lution can be up to 256°. This approach performs qualitatively
and quantitatively better than traditional volumetric fusion
approaches, such as vanilla TSDF fusion [125] and TV-L1
fusion [147] for volumetric fusion tasks and Voxlets [148|] for
volumetric shape completion from a single image.
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Fig. 10: Octree Generating Network (OGN) [29] takes an input
3D shape and gradually reconstructs octrees as the output in
different resolutions.

O-CNN

Another concurrent work in the scope of octree-based
CNNs for 3D shape analysis is the Octree-based Convolutional
Neural Network (O-CNN) [|149]. The authors’ main idea is to
represent 3D objects with octrees and execute 3D CNNs only
on nodes or cuboids, which are occupied by boundries of the
3D object, instead of sliding the convolutional kernel over
the whole voxel grid, as done for the standard convolution
computation in full voxel grids. The network constructs an
octree from an input oriented 3D model, e.g., an oriented
triangle mesh or a point cloud with oriented normals, and en-
riches each octant of this data structure with meta-information,
such as shuffle key vectors, label vectors, and input signal,
which are needed for the convolution operations. Furthermore,
a hash table is built to accelerate neighborhood search in
the convolution. By storing the octree data structure into
the graphical memory, O-CNN can be easily and efficiently
trained and evaluated on GPUs. To demonstrate the efficiency
of their network, the authors evaluated it on three shape
analysis tasks: object classification, shape retrieval, and shape
segmentation. In terms of classification accuracy, O-CNN
performed better than VoxNet [[127], slightly worse than the



method proposed by Brock er al. [21], and competitive to non-
voxel based methods such as PointNet [150]. Additionally, the
impact of different input representations on the same network
architecture (O-CNN) was investigated. Results showed that
an octree input achieves higher accuracy compared to full
voxel structures. For object part segmentation, O-CNN yields
better or comparable performance than other methods such as
PointNet [[150].

To improve computation and memory efficiency of O-
CNN, P-S. Wang er al. proposed the extension “Adaptive
O-CNN” [27], which consists of an encoder-decoder structure
and uses patch-guided adaptive octree shape representations.
Contrary to approaches like volumetric-based CNNs, where
the output is gerenated as voxels of the same resolution, this
method can generate adaptive octrees based on a patch-guided
partitioning strategy and with differently-sized planar patches.
The underlying assumption is the subdivision rule, which
states that splitting all octants to the finest level is not
necessary. The process can be stopped early for some of
the octants and the local shape inside these octants can
be represented by simple patches, e.g., planar patches.
However, this approach limits the quality of the output and
may encounter some difficulties in generating watertight
and curved surfaces. Adaptive O-CNN obtains better or
comparable classification accuracy than PointNet [150],
OctNet [146], and O-CNN [149], yet it performs worse
than PointNet++ [[151]], Kd-Network [[152], and the method
proposed by Brock et al. [21]. For the task of shape
reconstruction from a single image, Adaptive O-CNN
surpasses PointSetGen (PSG) [30] and AtlasNet [34] in
generating more detailed geometry.

Other Octree Prediction Approaches

Héne et al. introduced a hierarchical surface prediction
(HSP) [28] framework for high resolution voxel grid prediction
in 3D object reconstruction. The main idea boils down to
generating and predicting high resolution voxels around the
predicted surface and coarse resolution voxels for interior and
exterior parts of an object. The high resolution voxels are
not predicted directly, but instead, a coarse-to-fine approach
is used to create smoother 3D models hierarchically and in
a multi-resolution fashion. Starting with approximating the
coarse geometry of the output, more finely resolved details
are added step by step by refining the surface. This process
finally results in a voxel grid with up to 2563 resolution. The
proposed method is based on an encoder-decoder architecture.
A convolutional encoder encodes input to a feature vector and
then an up-convolutional decoder predicts the voxel grid or
final data structure (called voxel block octree data structure
in the paper). Classifying each voxel as boundary, free space,
or occupied space, only voxels with a boundary label require
high resolution prediction, since they cover the actual surface.
The major difference between HSP and OctNet [146] is that
OctNet takes the structure of the shallow octrees as input,
while HSP predicts the structure of the tree together with its
content. HSP produces more accurate surfaces with higher
resolutions compared to low resolution baselines predicting

dense voxels.

In a similar approach [29], Tatarchenko et al. suggested
Octree Generating Network (OGN) which is a convolutional
decoder that can generate and predict octree structure of 3D
shapes, along with the occupancy value of each cell. It operates
on octrees and reconstructs 3D shapes in a multi-resolution
manner, as illustrated in Fig.[I0] This method generates results
up to a resolution of 5123, The network gradually reconstructs
a high-resolution surface from the initial, low-resolution dense
voxel grid using hash-table-based octree blocks. If the recon-
structed surface has not yet reached the final output resolution,
cells with “mixed” state, i.e., undetermined state, will be
passed to the next layer of the network for further subdivi-
sion. Providing the same accuracy as dense voxel grids in
low resolutions, OGN offers less memory consumption and
shorter run-time in higher resolutions in comparison to voxel
grid-based networks. In particular, it is 20 times faster and
requires two orders of magnitude lower memory usage at 5123
resolution.

B. Point-based Representations

These days, point clouds are becoming increasingly
important and available due to the improvements in scanning
devices in recent years. A point cloud is a set of points in
3D space, inferred by various 3D data acquisition techniques.
It is an irregular data format, since there is no canonical
order between the points in a set. Each point can be defined
by its (z,y, z) coordinates. Therefore, the size of the matrix
representing a 3D object is initially N x 3 for N points. The
number of columns in this matrix representing the features
might be extended, if other information such as color, normal,
etc. exist. Considering the irregular and unordered nature of
point clouds, it is difficult to apply deep learning techniques,
such as CNNs, directly on them. Consequently, in order to
process a point cloud with neural networks, it was common to
transform them to voxel grids or collections of images. These
transformations usually present numerous challenges such
as information loss, voluminous data, resolution constraints,
and high computational cost. To reduce the overhead of data
transformation to other data formats, different methods for
effectively processing point clouds with neural networks have
been proposed, which will be discussed in the following
sections.

PointNet and PointNet++

Pioneer works in the field of learning global features directly
on point clouds are PointNet [[150] and PointNet++ [151].
PoinNet as proposed by Qi et al. directly consumes a raw point
cloud as an input and uses it for discriminative deep learning
tasks, e.g., object classification, semantic segmentation, and
part segmentation. As illustrated in Fig. [T] each of the points
in the input set is processed by a small neural network
individually and independently based on its own coordinates,
resulting in a high dimensional embedding of the points.
Following the embedding step, a simple symmetric function,
such as max pooling, is utilized to aggregate the encodings
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Fig. 11: PointNet architecture [150], which is used for classifi-
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input. Each of the points in the input point cloud is processed
by a small neural network individually and independently.
Then point features are aggregated by max pooling, a simple
symmetric function that respects the permutation invariance of
the input points. The aggregation step creates a global feature
vector that encodes the entire shape.
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from each of the points. The symmetric function is chosen
such that it pays attention to the permutation invariance of
the input points. The aggregation step brings about a global
feature vector, which encodes the whole shape and can be
fed to different neural networks for recognition purposes.
PointNet achieves higher classification accuracy compared to
LFD approach [123]], which is a 3D model retrieval method,
Spherical Harmonic descriptor (SPH) [[131]], and other methods
with volumetric representation, such as 3D ShapeNets [99],
VoxNet [127], and another method previously proposed by
Qi et al. [129]]. Although it has around 17 times fewer pa-
rameters than multi-view-based methods like MVCNN [132]],
its performance is only slightly lower compared to these
methods. PointNet provides linear complexity O(N) in both
spatial and temporal domains, where N is the number of input
points, while the complexity grows squarely with respect to
image resolution for multi-view methods, and cubically with
respect to the volume size for volumetric methods. More
importantly, due to it satisfying the permutation invariance
condition, PointNet cannot capture local information and thus,
lacks generalization.

In order to resolve the issues of PointNet, Qi et al
introduced the extension PointNet++ [[151]], which pays more
attention to local features and combines them with global
features to infer better results. The architecture is built on top
of PointNet, enriching it with a hierarchical feature learning
approach. The whole process, which is done recursively, can
be summarized as follows: 1) specifying centroids of local
regions by sampling a subset of the input point cloud using
the farthest point sampling (FPS) algorithm, 2) finding local
neighborhoods of these centroid points using radius-based ball
query, and 3) applying a mini-PointNet in each neighborhood
to mimic the concept of a convolution kernel and conduct
convolution-like operations in point space for the purpose
of local feature extraction. The presented method proved
to be robust towards non-uniform sampling density, which
might occur due to perspective effects, variations in radial
density, motion, etc. Compared to PointNet, PointNet++
has an improved classification accuracy for the ModelNet40
dataset.

Point Cloud Reconstruction and Generation

PointNet was mainly implemented for discriminative tasks,
such as classification and segmentation. The first approach for
reconstructing a 3D point cloud of an object from a single
(monocular) RGB or RGBD image was proposed by Fan et
al. [30] and is based on a generative learning-based approach.
The main contributions of this work were: 1) designing a point
set generator network, 2) proposing two proper loss functions
for the comparison of the ground truth with the network’s
predictions for point sets, i.e., Chamfer Distance and Earth
Mover’s Distance, and 3) modeling uncertainty and ambiguity
of the ground truth. The proposed network is composed of
an encoder and a predictor part. The encoder transforms the
input into an embedding space. The predictor is divided into
two parallel branches: a deconvolution (deconv) branch and a
fully-connected (fc) branch. The deconvolution branch learns
the smooth parts and main body of the object, while the
fully-connected branch learns non-smooth parts and details.
The results of these branches are then concatenated to create
the final point set. In comparison to 3D-R2N2 [20], which
generates a volumetric representation from single or multi-
view images, this method produces better results on CD, EMD,
and IoU metrics. In addition, it is able to reconstruct thin
structures more accurately.

Achlioptas et al. [31] proposed a solution for generative
tasks and unsupervised representation learning, based on an
end-to-end pipeline that can reconstruct point clouds using
deep autoencoders (AE) and GANs. The autoencoder extracts
features by learning a lower-dimensional representation of the
input, based on which the GAN][138]] generates point clouds. In
the autoencoder architecture, the authors exploited a PointNet-
like encoding scheme to learn compact representations. The
encoder generates a latent code which is invariant to the
order of input points. The latent code is converted back to
a point cloud using a standard deep network with three fully
connected layers as decoder. The authors further investigated
three different approaches for point cloud generation: 1) GAN
operating on raw point cloud, 2) latent-GAN, which is a plain
GAN being trained on the latent space of the pre-trained AE,
and 3) Gaussian mixture models operating on the latent space
learned by AE. The study indicated that the proposed AE
provides good generalization capacity towards unseen data.
However, the output of the proposed DL model architecture
is limited to 2048 points and generating high-quality surfaces
with such a small number of points is challenging.

Another closely related approach that attempts to solve
unsupervised learning challenges using deep auto-encoders is
FoldingNet [32]]. The presented architecture, as illustrated in
Fig. [12] utilizes a simple graph-based scheme as the encoder
part (similar to the method proposed in [[I53]], an improved
and generalized version of PointNet) in order to encode local
neighborhood structure information. Since applying convolu-
tion operations on graphs is difficult, the authors suggested
building the k-nearest neighborhood graph (K-NNG) and
repeatedly applying max-pooling operations on each node’s
neighborhood. This way, the DL model is able to capture local-
ity and extract features of neighboring points. For the decoder
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Fig. 12: FoldingNet architecture [32] consists of a graph-based encoder (an improved and generalized version of PointNet),
that encodes local neighborhood structure information, and a folding-based decoder, that reconstructs the point cloud from a

2D grid template deformation process.

part, a folding-based scheme is proposed to reconstruct the
point cloud from a 2D grid template deformation process. Due
to the fact that 3D point clouds are often sampled from object
surfaces, one can make the assumption that any 3D object sur-
face can be converted and squeezed into a 2D plane. It is also
possible to reverse this process, i.e., wrapping 3D shapes by
a fixed 2D paper (plane). This property builds the foundation
of the proposed method. The decoder maps 2D points from a
2D template grid to the surface of the 3D object using folding
operations. The definition of the folding operations, i.e., 2D-to-
3D mapping, is the main contribution of the paper , making it
the first single learned parametric function embedding from a
(grided) 2D (point) manifold into 3D space and a fundamental
building block for other surface reconstruction approaches.
FoldingNet’s decoder requires about 7% of the parameters
of the fully connected decoder proposed by Achlioptas et
al. [31]], which is significantly smaller than the latter. How-
ever, it was shown to perform better at feature extraction
in terms of classification accuracy and reconstruction loss.
Overall, FoldingNet achieves higher classification accuracy
than other unsupervised methods, such as LFD approach [[123]],
SPH [131]], TL-embedding network [22], and 3D-GAN [23].

PointFlow [33] is a 3D point cloud generation framework
that learns a distribution of distributions, i.e., distribution of
shapes and its respective points. A variational auto-encoder
(VAE) is applied to transform sampled 3D points from the
point prior into a realistic point cloud conditioned on a shape
vector. The distributions is modeled in two steps: First, the
distribution of the latent space of shapes is learned. To enable
the method to sample multiple shapes, PointFlow extracts
latent vectors of different shapes. A sampled Gaussian vector
(a shape prior) is transformed into a shape latent vector using a
continuous normalizing flow (CNF) [154H156]. In the second
step, the distribution of points on a specific shape is learned for
shape generation. Given a sampled 3D Gaussian point cloud
(point prior) and a shape latent vector inferred from the first
step, a CNF is used to move input points to their new location
and transform them into the target shape. For generative tasks,

PointFlow outperforms the methods proposed in [31]] in terms
of I-nearest neighbor accuracy (1-NNA) metric, while having
fewer parameters. With respect to the EMD score, it achieves
a better auto-encoding performance compared to Achlioptas’
method [31] for point cloud reconstruction from inputs.

Several recent studies have investigated point cloud up-
sampling [157H159]], normal and curvature estimation from
point clouds [160, 161, classification [162H168], segmen-
tation tasks [[162H164, 166, |[I68-170], object detection [[165}
171]], and point cloud denoising [172]. Although point-based
representation approaches discretize the surface of the shape
into a set of 3D points, they do not model the corresponding
connectivity. Thus, additional post-processing steps are needed
to generate final high quality 3D mesh. On the other hand,
existing approaches are very limited in terms of the number
of generated points leading to limited output quality.

C. Mesh-based Representations

Meshes are irregular type of data that are difficult to
predict by neural networks. Their components are vertices,
edges, i.e., pairs of vertices, and (triangular) faces, i.e.,
triplets of vertices. Therefore, researchers have investigated
different paths to address mesh-based representations, namely
patch-based approaches [34} 37], deformable template-based
approaches [38-41l [70L [173], and other mesh generation
methods [35, 36} 14244 [174]

1) Patch-based Approaches:

Groueix et al. introduced a method for 3D surface gen-
eration, called AtlasNet [34]], as illustrated in Fig. @ They
suggested to generate a 3D surface and represent it as a set of
folded 2D squares. The input shape can be either a 2D image
or a 3D point cloud. The method outputs the corresponding
3D mesh and its atlas parameterization. The main steps of
the approach include encoding an input 3D point cloud into
a 3D shape and reconstructing the 3D shape from an input



RGB image. 3D point clouds are encoded using a PointNet-
based encoder, which transforms the input point cloud into
a 1024-dimensional latent vector. Input images are encoded
using ResNet-18 [175]. The decoder consists of four fully-
connected layers, which extract the final surface. The target
3D surface is estimated using multi-layer perceptrons (MLPs),
which learn the local mapping of 2D-points to 3D-surface
points. Therefore, by transforming the 2D squares to the
3D surface using learnable parametrizations, i.e., MLPs or
patches, the final surface is covered in a way similar to putting
paper strips on a shape to make a papier-maché. The difference
between the proposed method and FoldingNet [32], which
is a folding-based method, is that FoldingNet deforms just
one 2D square or patch while AtlasNet investigates varying
number of 2D squares. Results from AtlasNet showed that
usage of multiple patches improves 3D reconstruction. For
single-view reconstruction from a 2D RGB image, AtlasNet
yields qualitatively better performance compared to the dense
voxel-based method 3D-R2N2 [20], the octree-based method
HSP [28]] and a point-based method [30]. Furthermore, it was
shown that AtlasNet provides good generalization properties,
however, it generates artifacts such as self-intersecting parts
and overlapping patches.
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Fig. 13: AtlasNet [34] is a patch-based approach that takes
either a 2D image or a 3D point cloud as input and outputs a
3D mesh. Multi-layer perceptrons (MLPs) are used to estimate
the target 3D surface, which learn the local mapping of 2D-
points to 3D-surface points.

Badki et al. proposed an approach [37|] to extract a 3D
mesh from a noisy, sparse, unordered and non-oriented set of
points. Instead of learning shape priors at the object level, the
method learns them locally while enforcing global consistency.
In order to represent these priors and local features, small mesh
patches, called meshlets, were used. These meshlets can be
interpreted as a dictionary of local features and learned priors.
The final mesh is the union of all meshlets. The authors used a
variational autoencoder for learning the priors by using a very
large dataset of meshlets, that was extracted from objects in the
ShapeNet dataset. During training, the local priors are learned
with meshlets. At inference, meshlets are deformed to match
the input point cloud via distance minimization. Since individ-
ual meshlets are updated independently in order to adapt to
the points, the overall mesh extracted from their union is not
watertight. Therefore, a global consistency step is performed
to eliminate inconsistencies across all meshlets, as illustrated

in Fig. [T4 Compared to Occupancy Networks [45] and Atlas-
Net [34], which are class-specific algorithms that learn priors
at the object level, and Deep Geometric Priors [[176], this
method produces better quantitative results in terms of CD and
Hausdorff Distance metrics. It also performs qualitatively well
at reconstructing objects from unseen classes during training,
coping with noise, and being robust to dramatic changes of
the object’s pose.

For all the aforementioned methods, mesh patches and the
tessellation process may affect the quality of final surface,
especially for complex shapes. Therefore, these approaches
may generate self-intersecting meshes and might be unable to
generate closed surfaces.

Fig. 14: Meshlet inconsistencies adapted from the patch-based
approach paper [37].

2) Deformable Template-based Approaches:

Deformable template-based approaches take a template
mesh with predefined interconnections as input, deform the
vertices and predict the final shape based on this. These
approaches can generally reconstruct meshes and shapes with
simple topology, however, they struggle to generate complex
structures with a lot of details. N. Wang et al. [38] de-
signed Pixel2Mesh, an end-to-end reconstruction pipeline for
extracting a 3D triangular mesh from a single RGB image.
Taking an input image and an ellipsoid with fixed numbers
of edges and vertices as initial mesh, it gradually deforms
the mesh using a graph-based convolutional neural network
(GCN) to generate the final 3D shape. As illustrated in Fig.[T3]
the overall method is composed of two main parts: 1) an
image feature network (2D CNN), which is used to infer
perceptual features using an input color image, and 2) a
three block cascaded mesh deformation network (graph-based
ResNet), that takes care of initial mesh deformation in a
coarse-to-fine manner. Each graph-based ResNet block takes
the perceptual feature concatenated with 3D feature encoding
of the input mesh as input. In their study, the authors showed
that Pixel2Mesh outperforms 3D-R2N2 [20] and the point-
based method proposed by Fan et al. [30] in terms of mean
of F-score, Chamfer Distance, and Earth Mover’s Distance
metrics. Quality-wise, it produces smoother surfaces with local
details. Nevertheless, the approach shows generalization issues
and can only generate meshes and objects of topologies similar
to the initial mesh.

Pixel2Mesh++ [39] works along with Pixel2Mesh to pro-
duce 3D meshes from multi-view images. The main idea is that
adding more images (3-5) of an object as input provides more
information for a shape generation method and thus results
in more accurate and detailed reconstructions. Pixel2Mesh++
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Fig. 15: Pixel2Mesh network [38] is a deformable template-based approach that reconstructs a 3D triangular mesh from a single
RGB input image. It consists of three mesh deformation blocks used for mesh resolution enhancement and vertex location

estimation.

consists of a multi-view deformation network (MDN), which
processes cross-view information for the prediction of optimal
deformations. First, a coarse mesh is produced by Pixel2Mesh,
which is then fed to the MDN part to be refined progres-
sively by adding details. With regard to the F-score metric,
Pixel2Mesh++ generates better results than 3D-R2N2 [20],
Learnt Stereo Machine (LSM) [177]], and two other baselines
that the authors implemented using Pixel2mesh [38]. In ad-
dition, it generalizes well across various semantic categories
and produces high quality outputs with accurate details.

Recent efforts by Kanazawa et al. [40] utilized a CNN
image encoder followed by three modules for 3D shape
generation, camera pose estimation, and texture prediction.
The CNN acts as encoder, producing a latent representation of
a single input image, which is fed to the three prediction mod-
ules. The 3D structure of a shape is generated by deforming
a learned category-specific mean shape with instance-specific
predicted deformations. Texture is parameterized as an UV
image which is predicted using texture flow. This mechanism
enables the method to transfer the texture of one instance
onto another. However, it cannot produce the detailed structure
of input shape. The presented approach obtains comparable
results to the one proposed by Kar et al. [[134] in terms of
the intersection over union (IoU) metric. Kar et al. [134]
exploited segmentation masks and optionally a set of keypoints
as annotations during inference to generate 3D rigid objects.
Contrary to that, the method of Kanazawa et al. only utilizes
these annotations during training and directly predicts a 3D
structure form an unannotated input image at inference time.

Hanocka et al. introduced Point2Mesh for reconstructing
meshes from point clouds [41]]. The core idea is a mesh fitting
process for reconstruction of the final mesh. In addition to
the input point cloud, an initial watertight mesh is fed to the
network. This initial mesh represents a coarse approximation
of the point cloud, which is iteratively deformed from
outside-in using a convolutional neural network to fit to the
input point cloud, as illustrated in Fig. [I6] Accordingly, a
network learns displacement and deformation of the mesh
vertex positions. The optimization of Point2Mesh is based
on MeshCNN [178]], which is a CNN-based pipeline applied

on triangular meshes. Unlike Screened Poisson Surface
Reconstruction, Point2Mesh is agnostic to normal orientation
and ensures watertight reconstructions from noisy input
with missing parts and unoriented normals. It also achieves
a higher F-score compared to Screened Poisson Surface
Reconstruction [9] and Deep Geometric Priors [176] for
shape denoising and completion. However, Point2Mesh
requires a large amount of compute time and memory,
possibly alleviated by data- or model-parallelism [179].
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Fig. 16: Point2Mesh [41] takes a point cloud (in blue) and
a deformable initial mesh as input and gradually reconstructs
the final output shape.

3) Other Mesh Generation Methods:

Liao et al. investigated end-to-end 3D surface prediction
using a Differentiable Marching Cubes algorithm (DMC) [42].
In previous research, surface prediction was solved in two
steps: first, predicting an intermediate SDF/occupancy repre-
sentation using an auxiliary loss, and second, taking a post-
processing step for 3D mesh extraction separately, such as
the Marching Cubes (MC) algorithm. On the other hand,
applying backpropagation to the Marching Cubes algorithm is
intractable due to non-differentiability. Hence, in order to unite
these steps to create an end-to-end framework, the authors
inserted a differentiable formulation as a final layer into a 3D
convolutional neural network. A point cloud, which is used
as input, is directly converted into a volumetric representation
using a grid pooling operation, e.g., max pooling in each cell.
An encoder-decoder network with skip connections is then
used to process pooled features, with the decoder operating in
volumetric space. That way, it not only estimates occupancy
probabilities, but also predicts the vertex displacement field



for a surface mesh. When compared with baseline methods
that infer occupancy or TSDF first and then apply marching
cubes as a post-processing step, DMC achieves superior results
with respect to Chamfer Distance, accuracy and completeness
metrics. Nevertheless, difficulties may arise while reconstruct-
ing very thin surfaces and disconnected parts can become
connected.

Scan2Mesh [43] is a generative model that combines con-
volutional and graph neural network architectures to predict a
complete, lightweight and structured 3D mesh representation
from an unstructured and incomplete range scan of an object.
The aim is to predict both vertex location and edge. Initially,
the features space is computed through a set of 3D convolu-
tions from input TSDF. The vertices are then predicted based
on the extracted features. A fully connected graph is generated
from the predicted vertices and all of the vertices are connected
to each other via edges. Next, a graph neural network is
used to classify edges and extract the ones that belong to
the mesh graph structure. Using this intermediate graph of
predicted edges and vertices, a dual graph is created which
comprises a set of valid potential faces. Finally, another GNN
is applied to predict the final face structures from the dual
graph. Scan2Mesh offers better qualitative and quantitative
performance compared to 3D ShapeNets [99]], 3D-EPN [24]],
and Poisson Surface Reconstruction [8, 9]. However, it de-
pends on fully connected graphs for predicting edges, which
leads to limitations in model size.

Mesh R-CNN [44] is an approach that unifies both 2D
perception and 3D shape prediction. It takes a single RGB
image as an input, detects 2D object instances in the image,
and creates a category label, bounding box, segmentation
mask, and 3D mesh predictions of the detected objects as the
outputs. Mesh R-CNN utilizes Mask R-CNN [[180]], an end-to-
end region-based 2D object detector, for the detection of 2D
objects. The 3D shape prediction step depicted in Fig. is
based on a hybrid approach which primarily produces a coarse
voxel representation of a detected object, transforms this vox-
elization into an initial 3D triangular mesh, and finally refines
this mesh by modifying the vertex positions using a graph
convolution network. This approach achieves better results
compared to a voxel-based method such as 3D-R2N2 [20],
a point-based method [30], and a mesh-based method such as
Pixel2mesh [38§]] in single-image shape prediction considering
Chamfer Distance and F1-score metrics.

M. Liu et al. [35] attempted mesh reconstruction from
input point clouds by fully utilizing the input and simply
adding connectivity to the existing points. Towards this end,
they introduced a deep point cloud network which proposes
candidate triangles and predicts faces. This information is
provided as input to a mesh generation module. First, a k-
nearest neighbor (k-NN) graph is build for each point in
the input point cloud, in order to decide which three points
should form a triangle face and infer candidate triangles
proposals. Next, a MLP network is employed to classify
candidate triangles and filter out incorrect triangles, such as
the ones that connect two independent but spatially adjacent
parts of the shape, using Intrinsic-Extrinsic Ratio (IER). To
infer the local connectivity between vertices comprising a

triangle, the ratio of geodesic distance (intrinsic metric) and
Euclidean distance (extrinsic metric) was proposed. Finally,
in a post-processing step the remaining candidate triangles
are sorted and merged in a greedy way to generate the
final mesh. The approach outperforms several learning-based
methods, such as AtlasNet [34], Deep Geometric Priors [176],
Deep Marching Cubes [42], and DeepSDF [50], as well as
traditional reconstruction methods, such as Poisson Surface
Reconstruction (PSR) [[8, 9]], Marching Cubes [126f, and Ball-
Pivoting Algorithm (BPA) [10] in terms of F-score, Chamfer
Distance, Normal Consistency metrics. Moreover, it generates
higher quality outputs with fine-grained structures than the
aforementioned methods and offers the capability to be trans-
ferred to unseen categories.

Daroya et al. [36] proposed a recurrent neural network
(RNN)-based method, called Recurrent Edge Inference Net-
work (REIN), to produce triangulated surface meshes from
sparse input point clouds using a bottom-up approach. The
network tries to predict edges sequentially and generates a
mesh by processing points one at a time from a queue of
points. The latent vector of the input point cloud, which is
inferred by a PointNet-based [[150] autoencoder, is also used to
enrich the data with global structure information of an object.
For edge prediction, the authors relied on the application of
recurrent networks, inspired by GraphRNN [181]. An RNN
can be a good choice for inferring sequential predictions
based on previous states [[182]. To tackle memory issues of
processing large point clouds, small sections of the input
point cloud are fed into the network one at a time, instead
of processing all of it at once. In each small section, points in
the queue are processed consecutively by REIN in two steps:
1) edge prediction: REIN tries to predict connections, i.e.,
edges, between the new vertex (which was chosen from the
queue) and the current partially predicted mesh. Two RNNs
are used for edge prediction, State RNN and Edge RNN. State
RNN encodes the current state of the graph with its nodes and
edges, given a point cloud and its latent vector as input. Edge
RNN attempts to predict sequence of edges considering the
current state. 2) face generation: all of the vertices and pre-
dicted edges are investigated to form faces. However, the face
generation module encounters problems generating surfaces
from edge predictions, especially for non-manifold surfaces.
Qualitatively and quantitatively, REIN produces better mesh
surfaces than Ball-Pivoting Algorithm (BPA) [10] and Poisson
Surface Reconstruction (PSR) [8].

D. Implicit Neural Representation

Neural networks are universal function approximators [183]],
hence they can be used to approximate any measurable
function, including signed distance function (SDF) and oc-
cupancy/indicator function, or to model other properties such
as radiance fields. Neural networks that parameterize such
implicitly defined functions, without explicitly parameterizing
the surface or properties of interest, are considered implicit
neural representations [51].

Similar to implicit functions stored in discretized voxel
grids, different functions can provide geometric information
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Fig. 17: Mesh R-CNN architecture. After the object detection step, the voxel branch predicts a coarse voxel representation
for each object detected by Mask R-CNN [180]]. Then in the mesh refinement branch, the cubified object is transformed into

the mesh after a series of refinement steps.

for parametrizing a surface by a neural network [124]. There
are also other functions that focus on capturing surface-
related properties such as appearance, texture, or reflectance
properties. In particular, these functions can be as follows:

o Level set methods define a distance function f on the
entire point set and then extract the zero level set f = 0 as
the boundary of an input object, as illustrated in Fig. [I8]
They divide a 3D space threefold into an interior part,
an exterior part, and an exact overlap with the object’s
surface. Given a point (z,y, z), the function f calculates
the distance of this point to the boundary of the object,
specifies its sign (SDF) [[184], and decides the location of
the point w.r.t the surface. The sign indicates whether a
point is inside or outside of the surface. Therefore, in con-
trast to SDFs stored in voxels that discretize 3D space and
store SDF value in each voxel, SDFs in implicit neural
representation are calculated for each point individually
using a neural network. DeepSDF , which will be
explained further down in this survey, was the first paper
to propose this approach.

e Occupancy functions model an approximate likelihood
of whether a point is occupied by part of an object
or not. This can be expressed as a binary classification
problem to classify a point as occupied or unoccupied.
The approach can be interpreted as a special case of
SDF that only considers the sign of SDF values [50].
Occupancy Networks [45]] and IM-NET [49)] fall into this
category and will be clarified subsequently.

« Radiance fields refer to a set of techniques that aim to
model the radiance or appearance properties of an object
or scene. Notable examples of these methods include
NeRF and its variants and subsequent sections will
provide thorough explanations of them.

1) Implicit Neural Representation based on Variants of SDF
or Occupancy Function:

The key idea behind these implicit neural representations is

to represent a shape as a neural network that takes a point in
space as input and outputs some property of that space, i.e.,
mapping it to occupancy or signed distance of the shape at that
coordinate. However, implicit neural representations cannot
directly derive detailed 3D shape features. Thus, an extraction
step is needed to infer a corresponding explicit representation,
such as a mesh. A possible isosurface extraction approach is
the classical marching cubes algorithm [126].

Compared to voxel-based representations, the memory cost
of implicit neural representations remains constant with re-
spect to the resolution. However, the capability of these meth-
ods to reconstruct fine details is constrained by the capacity
of their underlying network architectures [51].

>0

=0

Fig. 18: Level set methods divide a 3D space into three parts:
an interior part (f < 0), an exterior part (f > 0), and an exact
overlap with the object’s surface (f = 0).

As mentioned previously, Occupancy Networks, IM-NET,
and DeepSDF [45] |49, 50] represent pioneer works in implicit
neural representation concurrently. Mescheder et al. introduced
a new representation for 3D geometry, called occupancy
networks [45]], which can predict the continuous occupancy
function using a neural network for the extraction of 3D
meshes. As illustrated in Fig. [I9] the occupancy function
is approximated with a deep neural network that determines
an occupancy probability value between 0 and 1 for every
possible point in 3D point space (similar to a neural network



for binary classification). The mesh is then generated from
the occupancy network by utilizing a simple Multiresolu-
tion Isosurface Extraction (MISE) algorithm, which employs
octree structures and the marching cubes algorithm [126].
This expressive approach does not require discretization of
3D space. The representation can be inferred from different
kinds of input, such as single images, noisy point clouds, and
coarse discrete voxel grids, and can encode various structures
efficiently. In comparison to methods using different 3D rep-
resentations, such as 3D-R2N2 [20] (a voxel-based method),
point set generating networks [30]] (a point-based method), and
Pixel2Mesh [38]] and AtlasNet [34] as mesh-based techniques,
occupancy networks shows competitive qualitative and quan-
titative results for various inputs, e.g., single images, noisy
point clouds and coarse discrete voxel grids.

In a similar fashion, Z. Chen et al. [49] attempted to solve
3D shape analysis and synthesis problems by proposing an im-
plicit field decoder (IM-NET), that is based on the application
of binary classifiers. Based on two inputs, a point coordinate
and a feature vector encoding a shape (extracted from a shape
encoder), IM-NET specifies whether the point is inside or
outside the surface, using only the sign of its signed distance
function. They utilized their proposed implicit decoder as
the decoder part of some conventional frameworks (such
as autoencoders (AEs) and generative adversarial networks
(GANs5)) and proposed IM-AE and IM-GAN respectively. IM-
AE and IM-GAN can be used for both 3D reconstruction
and shape generation tasks. Based on visual results, IM-AE
generates smoother and high-quality surfaces compared to a
classical 3D CNN-based decoder implementation, operating
on voxelized shapes. IM-GAN showed better performance
compared to AtlasNet [34]] (in which output quality is con-
strained by the number of generated points) and 3D-GANJ?23]
(low coverage). For single-view 3D reconstruction task, the
proposed framework constructs higher quality results than
AtlasNet [34]] and HSP [28]. However, applying the implicit
decoder on each point in the training set increases training
time considerably. In addition, the network does not generalize
well to other categories, since it is trained individually for each
shape category.

With DeepSDF [50], a novel shape representation based
on the concept of signed distance functions was introduced.
Instead of storing SDF in a discretized regular grid, as done
in classical surface reconstruction techniques, the network
directly learns continuous 3D models of SDF from point
samples. The trained network predicts the corresponding SDF
value of the input data, from which the zero level-set surface
can be extracted. The zero isosurface can be rendered and
visualized through raycasting or polygonization algorithms,
e.g., marching cubes [126]. The network takes (z,y,z) co-
ordinates and a shape encoding vector as input to model
a dataset of shapes. In order to obtain a meaningful latent
space of shapes, an auto-decoder is used for learning a shape
embedding without an encoder. One of the advantages of
the method is that the network size is considerably smaller
compared to the voxel-based methods. DeepSDF outperforms
Atlasnet [34] (a mesh-based method) and OGN [29] (an
octree-based method) in reconstructing complex topologies

21

with fine details. It further outperforms 3D-EPN [24] (SDFs
stored in voxels) for the shape completion task.

Sitzmann et al. introduced a novel architecture, called
Sinusoidal Representation Networks (SIREN) [51f], a fully
connected neural network that uses periodic sine as its non-
linearity for implicit neural representations. The motivation
behind this lies in the fact that many recently published
studies on implicit neural representation employing ReLU-
based MLPs are incapable of capturing high frequency details
of the input signal. There are two possible explanations for
this phenomenon: 1) conventional neural network architectures
encounter difficulties while learning to apply the same function
at two different coordinates and thus, the learned functions
are not shift-invariant in general, and 2) ReLu non-linear-
ities cannot parameterize any signal that has information
in its second derivative since its second derivative will be
zero everywhere. Therefore, the authors suggested to replace
conventional non-linearities, such as tanh or ReLU, with
a periodic sine activation function to improve final results.
This replacement results in gaining a certain degree of shift-
invariance, and also addresses the problem of the second
derivative, since the derivative of sine is a shifted sine itself.
The method was applied to a wide variety of areas, including
image, audio, and video representations, 3D reconstruction,
and solving first-order and second-order differential equations.
In the 3D shape reconstruction task, SIREN generates details
of complex objects and scenes better than ReLU-based implicit
representations, such as NeRF [57].
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Fig. 19: Occupancy Networks architecture [45] predicts oc-
cupancy function for each point in 3D space using a deep
neural network. Different encoder architectures are used in
Occupancy Networks depending on the task and input. For
image input, a ResNet-18 architecture [175]], for point cloud
input, a PointNet encoder [150]], and for voxel input, a 3D
convolutional neural network are employed.

Methods based on Unsigned Distances

Some studies exploit unsigned distances instead of occu-
pancy or signed distances for learning representations. With
Sign Agnostic Learning (SAL) [52], Atzmon et al. proposed
a deep learning approach based on raw input data without
any oriented normals or signs. Generally, regression-based
methods utilize regression loss for training and need in-
side/outside ground truth information for this process, such
as DeepSDF [50] or Occupancy Networks [[45[]). In contrast
to these methods, SAL uses a sign agnostic loss function that



can be directly applied to raw unsigned data. The algorithm
generates high quality surfaces in comparison to AtlasNet [34]]
and a baseline method that approximates SDF based on the
work by [9]. D-Faust dataset, which comprises raw scans
of humans in various poses, is used for the experiments.
Although there is no need to include the signed implicit ground
truth representation in the calculation of the loss function
during training and also closing surfaces for training data
is unnecessary in this work, SAL predicts SDF as the final
output, which also results in closing the gaps even in open
surfaces and generating only closed outputs (closed surfaces,
in this case, is a division of 3D space into three regions: inside,
outside, and on the surface of an object, and they do not have
separate parts). Neural Distance Field (NDF) [53]] is a method
to predict the unsigned distance field for 3D surfaces using a
neural network. Similar to SAL, NDF does not close shapes
during training. However, it can successfully generate open
surfaces, shapes with inner structures, and open manifolds
compared to IF-Net [56]] and SAL [52].

DUDE [54] is another approach, which is able to represent
a surface by combining the unsigned distance field with the
normal vector field. Evaluation of this method in comparison
to DeepSDF and SAL demonstrates its superiority in
producing high quality outputs, especially for open surfaces,
with visually pleasant renderings. The main difference
between NDF and DUDE compared to SAL is that the
first two can reconstruct both open and closed shapes with
complex and detailed topology, while the latter attempts to
close parts that should be open.

Part-based Approaches

Encoding an entire surface into a single latent vector can
lead to substantial information loss, since the limited size
and capacity of the latent representation causes accuracy and
generalization issues [48]. In order to solve the difficulties
of generalizing to other shape categories and scaling to large
scenes, researchers resort to conditioning an implicit neural
representation on local geometric features [46-48, |55, 56} [185)
186]. There are different approaches to the implementation of
such conditioning. Some approaches fuse the volumetric repre-
sentation (voxel grids) with the implicit neural representation
and use local features stored in voxels for inferring implicit
neural representation [46, |47, 55| |56]]. Others use local patches
to learn implicit neural functions [48} |185] [186]. All of these
methods leveraged the advantages of encapsulating local as
well as global information for proposing more generalizable
and scalable approaches.

C. Jiang et al. suggested the Local Implicit Grid (LIG) [55]
representation, which decomposes 3D space into a regular
grid of overlapping part-sized local regions, and encodes each
region with implicit feature vectors. The key idea behind the
algorithm is that objects in different categories share similar
geometric features and details at neither micro scale, i.e.,
a very small patch, nor macro scale, i.e., the entire object,
but part scale. Therefore, a part-autoencoder was used to
learn embeddings for different parts of an object and extract
meaningful abstraction of its shape. The autoencoder consists
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of a 3D CNN encoder and an implicit network decoder in
form of a reduced version of the IM-NET [49] decoder.
During inference, a pre-trained implicit function decoder is
used in each grid cell, in order to generate the respective scene
part. Eventually, the overlapping latent grids were optimized
via the proposed mechanism to reconstruct the entire scene.
Since this method generalizes shape priors learned from object
dataset, it does not need any training on scene level dataset
for reconstructing scenes from sparse oriented point samples.
Therefore, it generates higher quality outputs from unseen ob-
ject categories than other methods such as IM-NET [49]], since
IM-NET learns only a single embedding for an entire object.
Compared to traditional surface reconstruction methods such
as PSR [_8, 9], Local Implicit Grid is capable of recovering
thin structures and details very well.

Likewise, Chibane et al. introduced Implicit Feature Net-
works (IF-Nets) [56]], which is composed of an encoding
and a decoding tandem. The network takes voxels or point
clouds as the input and predicts whether point p lies inside
or outside of an object, resulting in a continuous surface at
arbitrary resolution. To encode local and global structures
of a 3D shape, a 3D multi-scale grid of deep features is
extracted instead of using a single vector to summarize an
entire object. Consequently, rather than classifying (x,y, z)
point coordinates directly, the decoder classifies a point based
on these extracted features and creates occupancy predictions.
IF-NET achieves better quantitative results than occupancy
networks [45]], point set generation network [30]], deep march-
ing cubes [42[], and IM-NET [49] in point cloud completion,
voxel super-resolution, and single-view human reconstruction
tasks. Moreover, Chibane et al. [[187] proposed an extension
of IF-Nets for 3D texture completion.

Peng et al. developed convolutional occupancy net-
works [46]], a hybrid voxel grid/implicit neural representation-
based approach that combines convolution operations with
implicit representations in form of a convolutional encoder
with an implicit occupancy decoder. The method is inde-
pendent of the input representation. Given a point cloud or
voxel grid as input, the method uses a 2D plane encoder/3D
volume encoder based on PointNet to process the input by
converting it into features and projecting these local features
onto a plane(s)/volume. A convolutional 2D plane decoder/3D
volume decoder further processes the feature plane(s)/volume
using 2D/3D U-Nets [[188] [189]], integrating both local and
global information. At the end, a small fully-connected oc-
cupancy networks [45] is used to predict the occupancy
probability from a given query point p and its feature in 3D
space. For rendering and extracting meshes from the input,
the Multiresolution Isosurface Extraction (MISE) algorithm
is applied during inference. Evaluation of both object-level
and scene-level reconstruction was performed using synthetic
and real-world data sets. The major difference between the
novel method [46] and the original occupancy networks [45]]
is that convolutional occupancy networks capture the local
features of the space as well as global features, leading to
higher generalizablility, scalability and faster training. More-
over, it benefits from the translational equivariance property
of convolutional networks, while not supporting the rotational



equivariance property.

In similar work [47], Chabra et al. introduced Deep Local
Shapes (DeepLS), a method for deep shape representation
which uses learned local shape priors. As illustrated in Fig. 20]
the key idea is the decomposition of a shape into small
components, in order to improve reconstruction results. To
this end, local information of these components is stored in
a grid of independent latent codes. Based on these, SDFs are
predicted by applying DeepSDF [50] as local shape neural
network to each grid cell. DeepLS outperforms DeepSDF in
accuracy and inference time by approximately an order of
magnitude.

Fig. 20: DeepLS [47|] decomposes a scene into local shapes
and uses a set of locally learned continuous SDFs defined by
a neural network.

Unlike occupancy networks [45]] and DeepSDF [50], which
extract the global latent code vector from the entire input,
local patches are modeled as deep implicit functions in patch-
based approaches [48, 185 |186]. Erler et al. presented a
patch-based learning framework, called Points2Surf [48]], that
generates accurate implicit surfaces directly from raw point
clouds without surface normals. The underlying algorithm is
based on the notion of considering a shape as a collection
of small shape patches. Instead of representing an entire
surface as a single latent vector, Points2Surf creates separate
feature vectors for different patches to describe local details
in addition to global information. By decomposing the surface
reconstruction problem into learning a global function (that
learns the sign of SDF), and a local function (that learns the
absolute distance field of SDF with respect to local patches),
Points2Surf succeeds in being robust to noise and missing
parts and also generalizing well to unseen shapes. Addition-
ally, Points2Surf yields a significant drop in the reconstruction
error on unseen classes compared to both data-driven and non-
data-driven methods such as DeepSDF [50] and AtlasNet [34],
or SPR [9]. However, this patch-based approach results in
longer computation time, inconsistencies between outputs of
neighboring patches, and non-watertight and bumpy surfaces.

There is a growing number of studies based on implicit
neural representation for various tasks. Some authors
investigated 3D human reconstruction [186l 190} |191]], 4D
reconstruction [[192]], and 3D reconstruction of the appearance
and texture of surfaces in addition to their geometry with
3D supervision [193 [194] or without 3D supervision [57,
195H197]]. These are some recent articles [198-203|], which
are SDF-based, and some [186} 190, (191} |204] that are based
on predicting occupancy probability.
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Equivariant Neural Networks

Chatzipantazis et al. introduced a SE(3)-equivariant
coordinate-based attention network called TF-ONet for 3D
surface reconstruction. Local shape modeling and equivariance
are the two core design principles of this method. SE(3) stands
for Special Euclidean group in three dimensions representing
transformations including translations and rotations in 3D. In
simple terms, equivariance means that when the pattern in the
input changes, i.e., when it is rotated or shifted to a specific
direction, the output should also change in an equivalent pro-
portion. TF-ONet works directly on unoriented and irregular
point clouds and outputs the occupancy field of a shape. To
predict the occupancy score at any given point in space, TF-
ONet creates equivariant features for each point that function
as keys and values of specialized attention blocks. This enables
TF-ONet to output high-quality reconstructions and to gener-
alize to novel scenes composed of multiple objects, despite
being trained on single objects in canonical poses. Inspired by
SE(3)-transformers [206] and tensor field networks [207[], TF-
ONet attention modules ensure equivariance by incorporating
symmetries into the learning process. It is basically a two-
level approach: 1) the first level, i.e., an encoder, applies
self-attention in local neighborhoods around each point to infer
local features from the point cloud, and 2) the second level,
i.e., a cross-attention occupancy network, uses the extracted
point features and the coordinates of a query point in space to
calculate the value of the occupancy function for the specific
query point.

For single object reconstruction tasks, TF-Onet performs
comparably better than non-equivariant networks such
as occupancy networks [45], convolutional occupancy
networks [46], IF-Net [56], and also equivariant networks such
as vector neurons [208|], and GraphOnet [209] considering
evaluation metrics such as Chamfer-L1, F;-score, and IoU.
For scene reconstruction tasks trained only on single objects,
global shape modeling-based techniques such as occupancy
networks [45] and vector neurons [208] are not able to
generalize to scenes containing multiple objects. Moreover,
local shape modeling-based methods such as convolutional
occupancy networks [46] that are not equivariant under SE(3)
transforms, are only able to produce low-quality objects in
novel poses. TF-ONet instead excels at the tasks and can
generalize to novel scenes with high quality, benefiting both
from local shape modeling and equivariant properties.

2) NeRF-based Approaches:
Fundamentals of NeRF

Neural radiance fields [57], commonly referred to as NeRFs,
are basically used for view synthesis. The main idea behind
NeRFs is to train a model that can produce new views of a
scene or an object and can represent them in 3D, given a set
of 2D images from different viewing angles as input. Hence,
multiple input views of a scene and their corresponding camera
poses are used to render new views of that scene by interpo-
lating between the given views. The NeRF method employs a
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Fig. 21: Overview of neural radiance fields (NeRFs) [57]. The

fully-connected deep network to represent a scene. Each input
(z,9,2,0,¢) is a single continuous five-dimensional coordi-
nate that encompasses spatial position and viewing direction,
and each output (RG Bo) is density and view-dependent emit-
ted radiance at that particular spatial location. Consequently,
the neural network describes an implicit function that exists
throughout all locations as a continuous representation without
any discretization. As a result, by implicitly encoding density
and color through a neural network, NeRF has demonstrated
impressive performance on new view synthesis of a particular
scene.

Although overfitting is usually an undesirable behavior in
machine learning, the key part of this approach is the usage
of a neural network that is overfitted to one particular scene
and only cares about this specific scene. For rendering a new
scene, it is necessary to take a fresh neural network and train it
from scratch until it is overfitted to the new scene. Therefore,
instead of storing a scene as a mesh or a voxel grid, the scene
is stored in the weights of the neural network. For instance, if
a scene consists of a tree, the weights represent this tree and
are very specific to it, outputting nonsense for another scene
if not being trained once again.

To explain the fundamentals of NeRF in more detail ac-
cording to Fig. 21| the images have to be transformed to
5D coordinates (z,y, z,0,¢)s first. (x,y,z) are coordinates
of a pixel point in 3D space and (6, ¢) are related to the
viewing angle. For each pixel on an image, a ray is sent
through. Therefore, every pixel in every input picture defines
a ray and then it is sampled along the ray. Consequently, each
input image sends out a lot of rays, and for each ray, there
are many sampled points. Next, for each location represented
as (z,y,%,0,¢), the neural network effectively determines
the presence of an object and subsequently identifies its
corresponding color. This nine-layer fully connected network
provides four numbers (RGBo) as the output: the (RGB) is
the color of that particular pixel point, and o is the density
for each of the individual points. The density value serves
as an indicator of the presence or absence of an object in
the designated region of space, as well as its density. If
this process is done for all the points in space from all
viewing angles, a complete 3D representation of what it looks
like can be inferred. The neural network outputs different
results for the same location depending on different viewing
angles. Accordingly, it can capture the reflections, lighting
effects, and transparency. Eventually, classical techniques for

ship in the figure is borrowed from the ShapeNet dataset [97].

volume rendering are employed to project the network outputs
onto a two-dimensional image. Given that volume rendering
is intrinsically differentiable, it is possible to define a loss
function that measures the difference between the predicted
and the ground truth color of the ray. In order to convert NeRF
to a mesh, marching cubes can be further applied.

To produce high-resolution complex scenes, two interesting
tricks were utilized: 1) positional encoding, and 2) hierarchical
sampling. Positional encoding, which is similar to the same
one in transformers [210], is used to map the 5D input vector
to higher dimensional space using sin and cos waves, helping
MLP in approximating and representing high-frequency func-
tions. It enhances the ability of a neural network to not only
capture coarse-grained structures but also to perform well in
representing finer details. Hierarchical sampling is a two-step
sampling method with two networks: a coarse network, and a
fine network. The points on the ray are sampled in a uniformly
distant fashion from each other. These sampled points are run
through the network for density prediction. Next, an evaluation
step is taken place to decide where should be sampled more in
the second round, based on the output of the previous step. So
the output of the coarse network discloses where the important
stuff is. The second round of sampling starts with points with
higher density, i.e., points closer to the particular object which
is perceived, and the vicinity of such points will be sampled
a lot more. Both coarse-grained and fine-grained networks are
optimized at the same time using a loss.

Delving into the advantages associated with NeRFs, it is
clear that these methods are not view-dependent, without
the need for any 3D input supervision. Additionally, NeRFs
are memory-efficient compared to voxel grid representation.
One neural network of one scene fits into a few megabytes,
which might even be smaller than the input image size for
that scene, whereas dozens of gigabytes might be needed for
storing the same scene in voxels. Regarding the limitations
of NeRFs, what makes them impractical is their requirement
for a large number of high-quality posed images as input.
The more images are fed, the better the output quality will
be. Another downside is related to their high computational
cost, originating from optimizing each scene individually
without sharing knowledge between different scenes [62].
This implies that for every scene, the network should be
trained again and a pre-trained one cannot be utilized. For
instance, it takes around 100-300k iterations, i.e., roughly 1-2
days, for the naive NeRF network [57] to be trained on a



single scene using a single NVIDIA V100 GPU.
NeRF and its Variants for View Synthesis

This section provides a summary of some of the papers
that aim to enhance NeRF and its abilities. In NeRF++ [61]],
K. Zhang et al. analyzed NeRF and uncovered three major
problems and situations in which NeRF might fail: shape-
radiance ambiguity, near-field ambiguity, and parameterization
of unbounded scenes such as large real-world scenes. The
first two issues are related to the fact that NeRF is actually
overparameterized, i.e., the degree of freedom for NeRF to
hallucinate and move toward a completely wrong answer is
high. However, the authors of NeRF [57] use an interesting
implementation trick and regularization. They feed viewing
angles in the very last layers of the MLP network. Therefore,
the MLP actually starts with location-wise coordinates of a
point in the beginning, and viewing angles are fed in the last
layers, resulting in a limited degree of freedom for NeRF.
Accordingly, if all 5D coordinates are fed to the network from
the beginning, the shape radiance ambiguity becomes a big
issue, affecting the quality of NeRF’s outputs drastically.

NeRF++ proposes a couple of solutions to tackle these
three problems and enhance output quality. By introducing an
auxiliary loss, NeRF can avoid moving towards a poor solution
which may lead to completely wrong scene geometry esti-
mation, thus addressing the shape-radiance ambiguity issue.
Furthermore, adaptive near-field culling is proposed to solve
the near-field ambiguity issue. It culls the front part of each
view frustum adaptively based on the geometry of a scene,
i.e., it prevents estimating the geometry right in front of the
camera contrary to vanilla NeRF. The third issue concerns
scenarios in real-world settings where precise reconstruction
of objects in front of the camera is essential. However, the
camera’s ability to capture other items beyond these objects
necessitates a certain level of reconstruction for the distant
items as well. NeRF++ suggests homogenous parameterization
that enables having a detailed reconstruction in the foreground
as well as a detailed reconstruction of the background. This is
done by training two NeRFs, one for the foreground part of
the scene, and the other for the background part, increasing
the capacity of the model for reconstructing details at different
levels. NeRF++ still needs per-scene training and one scene
takes about three days to be trained.

PixelNeRF [62] is built upon the concept of NeRFs for
3D reconstruction and synthesizing photorealistic 3D scenes
from a single or a small number of posed images. PixeINeRF
attempts to tackle the requirement of NeRFs for a lot of
images as the input and make it generalizable. Considering
the fact that extracting 3D geometry and the appearance of
a scene from limited input is a challenging task and NeRFs
do not share knowledge between the scenes, the framework
proposes to condition a NeRF on spatial image features. Thus,
pixelNeRF employs a fully-convolutional image encoder that
infers a pixel-aligned feature grid. Then, a spatial location
and its corresponding encoded feature are fed to a NeRF
network for color and density prediction. PixeINeRF shows
better generalization capabilities and performance compared
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to NeRF. However, its rendering time is still slow, and more
input views cause a linear increase in the runtime.

In another concurrent work to overcome the generalizabil-
ity issue and long optimization time of NeRFs, MVSNeRF
[63] suggests a deep neural network that can reconstruct a
neural radiance field, given only three nearby input views.
This approach combines plane-swept cost volumes, which
are used for geometry-aware scene reasoning in multi-view
stereo (MVS), with NeRF models. To create a cost volume,
MVSNEeRF first warps 2D image features onto a plane sweep.
Then, a 3D CNN is leveraged for the reconstruction of a neural
encoding volume with per-voxel neural features. Next, features
interpolated from the encoding volume are employed to predict
density and RGB radiance for an arbitrary point using an MLP.
Achieving comparable or better rendering results, MVSNeRF
can significantly surpass NeRFs [57] in terms of optimization
time efficiency, i.e., roughly 30 times faster, if more images
are provided as input. Moreover, it generalizes better than
PixelNeRF [62]] and IBRNet [211].

MipNeRF [212] attempts to address one of the problems of
NeRF, which is the production of blurred or aliased renderings
when dealing with training or testing images at different scales.
In NeRF, all of the cameras have the same distance from
an object. Thus, it is able to do view synthesis without the
need to think about scaling or aliasing. However, when new
cameras are to be added at different scales, NeRF begins
to collapse since it is a single-scale model trying to tackle
a multi-scale problem. To fix this issue, MipNeRF proposes
some modifications to the vanilla NeRF including: 1) casting
a cone instead of sending a ray through each pixel, 2) slicing
up the cone into conical frustums instead of sampling single
points along each ray, 3) computing integrated positional
encoding instead of positional encoding of a single coordinate
along the ray, and in general 4) training a single neural
network that describes the scene at multiple scales instead of
training separate neural networks at various scales. These new
properties help MipNeRF reason about the scale of its inputs.
MipNeRF is capable of producing high-resolution renderings
across multiple scales rather than just at a single scale in
vanilla NeRF. NeRF’s performance decreases when being
trained on multi-scale data, while MipNeRF’s does not. The
number of parameters in MiPNeRF is half of that in NeRF
while also being 7% faster for their multiscale dataset. Mip-
NeRF360 [213]] and ZipNeRF [214] are some other recent
methods used for anti-aliasing Neural Radiance Fields.

In a work proposed by NVIDIA, instant NGP [215[], Miiller
et al. try to facilitate and speed up neural graphics primitive
tasks. A neural graphics primitive is an object represented
by a neural network that takes a query as input, such as
position and some extra parameters, and outputs appearance
and shape attributes. Examples of NGP can be computing
signed distance function, NeRFs, radiance cashing, etc. To
bring about simplicity, instant training, real-time rendering,
and high-quality results for instant NGP, solutions such as
multiresolution hash encoding by storing the trainable feature
vectors in a compact spatial hash table, using a small neural
network called a fully fused neural network, and improvement
of training and rendering algorithm are proposed as main



ideas.

The amount of research efforts based on NeRF is
increasing. From relighting [64, (65, 216, 217|], and view
synthesis without pose supervision [213], to learning non-rigid
objects and dynamic scenes [66H68| [219-221]], and tackling
computational challenges of NeRF and heading towards the
real-time rendering [58H60, 222[], numerous studies have been
conducted to broaden the horizons of NeRF as well as its
various applications.

NeRF for 3D Surface Reconstruction

In a NeRF model, the scene geometry is hidden inside the
neural networks, i.e., it is implicit. In order to achieve 3D
surface reconstruction and transform the NeRF representation
into an explicit representation such as a mesh, a surface
extraction step is essential. By analyzing and thresholding
the learned density, i.e., extracting an arbitrary level set of
the density function that is learned by NeRF, and using
methods such as marching cubes, the baseline NeRF can
extract and reconstruct an approximate explicit 3D geome-
try [223]. Although NeRF and its variants generate impressive
results for the novel view synthesis task, they cannot output
high-quality 3D surface reconstruction. The quality of the
extracted 3D geometry is not satisfactory because the initial
objective of NeRF is novel view synthesis, not 3D surface
reconstruction. Since the density-based representation used in
NeRFs is flexible and does not have enough constraints on
3D geometry [224], it imposes some limitations on inferring
accurate surface geometry, especially when ambiguities exist.
Therefore, the extracted surfaces usually contain artifacts. To
alleviate this issue, some papers have been presented for
the 3D surface reconstruction task that tried to incorporate
implicit neural surface representation approaches based on
a signed distance function or an occupancy function into
NeRF-based methods, benefiting from the advantages of both
categories. In these methods, instead of choosing the density-
based scene representation used in NeRF, the scene space
is usually represented as a signed distance function or an
occupancy function.

Oechsle et al. proposed UNIfied Neural Implicit SUrface
and Radiance Fields (UNISURF) [225]] which is a frame-
work for 3D surface reconstruction and capturing high-quality
implicit surface geometry from multi-view images without
the need for object masks. It unifies the implicit surface
models with radiance fields for solid and nontransparent
object reconstruction given a set of RGB images. UNISURF
represents surfaces and defines object or scene geometries
using occupancy values. It learns and optimizes this implicit
surface via a volume rendering method like NeRF. The output
mesh is extracted using Multiresolution IsoSurface Extraction
(MISE) algorithm [45]]. Considering reconstruction quality,
UNISURF outperforms NeRF [57]. There are some limiting
factors for this method, including reconstructing only solid
objects and constraints to model transparencies, performance
drop for overexposed or rarely visible regions in the ground
truth images, and inability to resolve the shape-appearance
ambiguities such as shadows and holes in objects.
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In another concurrent attempt, P. Wang et al. presented
NeuS [224], which learns neural implicit surface represen-
tation based on SDF using volume rendering, with the goal
of reconstructing the 3D surface of an object or scene given
multiple images from different viewing points without lever-
aging mask supervision. Instead of just doing standard volume
rendering or standard surface rendering, this framework sug-
gests using volume rendering (inspired by NeRF) in addition
to surface representation with neural SDF. The key idea behind
this method is to represent a 3D surface as the zero-level
set of a signed distance function, i.e., representing a surface
with neural implicit SDFs, and to introduce a new volume
rendering method by taking inspiration from NeRF, for train-
ing a neural SDF representation with robustness. This novel
volume rendering technique attempts to learn the weights of
the neural network by rendering images from the implicit SDF
first, and then minimizing the difference between the rendered
images and the input images. NeuS performs quantitatively
and qualitatively better than NeRF [57]] and UNISURF [225]] in
high-quality surface reconstruction. However, one failure case
of NeuS is its inability to accurately reconstruct textureless
regions. This limitation is caused by the ambiguity of these
textureless regions for reconstruction in neural rendering.

Variants of NeuS [226] |227] have been proposed with the
goal of improving the reconstruction quality. HF-NeuS [226]],
a method for multi-view surface reconstruction with high-
frequency details, breaks down the SDF into fundamental com-
ponents, namely base and displacement functions, and adopts
a gradual increase in high-frequency details through a coarse-
to-fine strategy. In Geo-Neus [227]], by utilizing sparse 3D
points in structure from motion constraint in conjunction with
the photometric consistency in multi-view stereo constraint,
the learning of neural SDF can be enhanced.

In a similar fashion to NeuS, another concurrent work
called VoISDF [228]], suggested a volume rendering framework
for implicit neural surfaces. Replacing general-purpose MLP
densities with densities from a certain family, i.e., in this case
representing the density as a function of the signed distance to
the scene’s surface, is the core contribution of VolSDF. Two
fully connected neural networks, one for the approximation of
the SDF of the learned geometry, and the other for representing
the scene’s radiance field, form the structure of this framework.
Compared to NeRF [57] and NeRF++ [61]], VolSDF generates
more accurate results. One of the limitations of VoISDF is
that it assumes the object is homogeneous with a constant
density. Moreover, its reconstruction time is still high due to
the independent training of the network for each scene.

Recently, SDFStudio [229], which is a framework for
neural implicit surface reconstruction, has been released. It
is built on top of nerfstudio [230] and includes a unified
implementation of VoISDF, NeuS, and UNISURE, three
popular neural implicit surface reconstruction techniques.
Because of the unified and modular implementation of this
framework, transferring ideas between methods is simple.
The idea from Geo-NeuS can be integrated with VolSDE,
bringing about Geo-VoISDF method.
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TABLE II: Comparison of various 3D reconstruction methods. Convolutional Neural Network (CNN), Graph Convolution
Network (GCN), Intersection over Union (IoU), Chamfer Distance (CD), Earth Mover’s Distance (EMD), Hausdorff Distance
(HD), Binary Cross-Entropy (BCE), Average Precision (AP), Cross-Entropy (CE), Squared Distance Error (SDE), Normal
Consistency (NC), Peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM).

Name Input Output Method Loss Dataset Metric
3D-R2N2 A single-view image  Voxels Encoder-decoder, Voxel-wise CE ShapeNet, IoU, CE
or 3D conv LSTM Pascal 3D [231],
multi-view images Online
products [232]
VRN Voxels Voxels Encoder-decoder BCE ModelNet Accuracy
TL-embedding RGB images Voxels Encoder-decoder CE, ShapeNet, AP
Euclidean loss IKEA
dataset [233]
3D-GAN An image Voxels CNN, BCE loss, ModelNet, AP
3D GAN, KL-divergence loss, IKEA dataset,
Encoder-decoder reconstruction loss ShapeNet
3D-EPN Depth maps Voxels Encoder-predictor L1 loss ShapeNet Accuracy, L1
network error
3D shape comple- Point cloud and Occupancy grid  Encoder-decoder Reconstruction loss,  ShapeNet, Hamming dis-
tion @] a 3D bounding box or SDFs maximum likelihood  KITTI, tance, accuracy,
loss ModelNet completeness
SG-NN \I RGB-D scan A sparse TSDF  Encoder-decoder L1 loss, BCE loss Matterport3D L1 error
Octnetfusion One/multiple  2.5D  Voxel or Encoder-decoder L1 loss, ModelNet40 IoU, precision,
depth image(s) Octree BCE recall
HSP RGB images or Voxels Encoder-decoder CE ShapeNet IoU, CD
depth images or
partial grids
OGN Voxels Structure of an  Encoder-decoder CE ShapeNet IoU
octree and bi-
nary occupancy
map
Adaptive A single image or A patch-guided  Encoder-decoder CE, ModelNet, CD, accuracy
O-CNN point cloud adaptive octree SDE ShapeNet
Point set generation A single RGB or Point cloud Encoder-predictor CD, ShapeNet IoU, CD, EMD
net RGB-D image EMD
Latent Point cloud Point cloud Encoder-decoder, CD, ShapeNet, JSD, coverage,
3D points GAN EMD ModelNet MMD
FoldingNet Point cloud Point cloud Encoder(graph- CD ShapeNet, Accuracy
based)-decoder ModelNet
PointFlow Point cloud Point cloud Encoder-decoder Prior loss, ShapeNet JSD, MMD,
reconstruction loss, coverage, CD,
posterior loss EMD, accuracy
AtlasNet 2D images or Mesh Encoder-decoder CD loss ShapeNet CD
point cloud
Meshlet Point cloud Mesh Encoder-decoder CD loss ShapeNet CD, HD
Pixel2Mesh An RGB image Mesh Graph convolution  CD loss, Dataset of 3D-  Fl-score, CD,
network normal loss R2N2 @] EMD
Pixel2Mesh++ A few RGB images Mesh GCN CD loss, Dataset of 3D-  Fl-score, CD
or normal loss R2N2
multi-view images
CMR An image Mesh Convolutional Reprojection loss, CUB-200-2011 TIoU
encoder regression loss dataset,
PASCAL 3D+
dataset
Point2Mesh Point cloud Mesh CNN CD loss, A large dataset Fl-score

beam-gap loss

of object

scans [234]
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DMC Point cloud Mesh Encoder-decoder Point to mesh loss, ShapeNet CD, accuracy,
network with skip  occupancy loss, completeness
connections smoothness loss,

curvature loss

Scan2Mesh One/multiple depth ~ Mesh CNN, CE, ShapeNet CD,

image(s) graph neural  CD loss normal
network deviation

Mesh R-CNN An RGB image A category GCN BCE, ShapeNet, Fl-score, CD,

label, CD Pix3D dataset NC
segmentation

mask,

boundary box,

a 3D triangular

mesh

Meshing point  Point cloud Mesh CNN Euclidean distance, ShapeNet Fl-score, CD,

clouds with IER geodesic distance NC

REIN Point cloud Mesh Encoder-decoder, CD, ShapeNet, CD, point nor-
RNN BCE ModelNet10 mal similarity

Occupancy An image or Implicit surface  Encoder, CE ShapeNet, IoU, CD, NC

Nets point cloud or fully connected net- KITTI,

discrete voxel grids work Pix3D
IM-Net Images or Implicit surface  Encoder-decoder, Weighted mean  ShapeNet MSE, IoU, CD,
voxels GAN squared error, LFD, MMD,
Wasserstein ~~ GAN Cov
loss

DeepSDF Point cloud Implicit surface  Auto-decoder L1 loss ShapeNet CD, EMD,

accuracy

SIREN Point cloud Implicit surface  Fully connected SDF loss (Eikonal  Stanford 3D N/A
neural network equation) scanning

repository

SAL Point cloud or Implicit surface  Variational encoder-  Sign-agnostic loss  D-Faust dataset CD

triangle soups decoder with L2 distance

NDF Point cloud Implicit surface  Encoder-decoder Unsigned distance  ShapeNet CD

field loss

DUDE Triangle soups Implicit surface  Feed-forward L2 loss ShapeNet ToU, mean
networks absolute error,

normal map
error

LIG Point cloud Implicit surface  Encoder-decoder BCE loss ShapeNet, F1-Score, CD

Matterport 3D,
SceneNet

IF-NET Point cloud or Implicit surface  Encoder-decoder CE ShapeNet IoU, CD, NC

occupancy grid

Conv occupancy  Point cloud or Implicit surface ~ Encoder-decoder BCE ShapeNet, Fl-score, IoU,

nets voxels/coarse occu- ScanNet, CD, NC

pancy grid Matterport 3D

DeepLS Depth data or Implicit surface  Autodecoder Negative log likeli-  Stanford 3D CD

mesh network hood loss scanning
repository,
3D
warehouse [235)]
Point2surf Point cloud Implicit surface  Encoder-decoder L2 loss, ABC dataset CD
BCE loss
UNISURF [225] RGB images Implicit surface ~ MLP Reconstruction loss, DTU [236], CD
Surface BlendedMVS
regularization 12371,
SceneNet [@]
NeuS || RGB images Implicit surface ~ MLP Color loss, DTU [236], CD, PSNR,
regularization loss, BlendedMVS SSIM
mask loss 1237
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TABLE III: Quantitative report about some of the methods’ performance on ShapeNet. Chamfer distance (CD), intersection
over union (IoU), average precision (AP), and F_score are calculated as the average. For IoU, F_score, and AP, the higher
the better. For CD, the lower the better. The number of ShapeNet categories used in an experiment (#Cats), not measured or
not mentioned (-), single view reconstruction (SVR), multi-view reconstruction (MVR), reconstruction (R), completion (C),
auto-encoding (AE), training time (T), inference time (I), generating a mesh (mg), memory (Mem.), model size (MS). * is
calculated for (323). + is related to chamfer-L1. For detailed information regarding data preparation methods, train/test splits,
metrics, and other specific details, please refer to the context of each individual paper.

ShapeNet . .
Papers CD ToU Il:“_score AP #Cats Task Time Size
3D-R2N2 [20] - >0.60 - - 13 MVR (3 views) - -
TL-embedding [22] - - - 65.40 5 SVR - -
OGN [29] - 0.59 * - - 13 SVR 5 days T for 256° 0.54G(2565)
Adaptive O-CNN [27] 0.00460 - - - 13 SVR - -
Point set generation [30] 0.25000 0.64 - - 13 SVR - -
PointFlow [33] 0.00070 - - - 13 AE - -
AtlasNet [34] 0.00150 - - - 13 AE (25 patches) - -
AtlasNet [34] 0.00510 - - - 13 SVR (25 patches) | - -
Meshlet [37] 0.00900 - - - - R - -
Pixel2Mesh [38]] 0.59100 - 59.72 - 13 SVR 72h T - 15.5ms I (mg) -
Pixel2Mesh++ [39] 0.48000 - 66.48 - 13 MVR (3 views) 96h T - 15.5ms I (mg) -
Scan2Mesh [43]] 0.00160 - - - 8 C - -
Meshing with IER [35] 0.00071 - 87.20 - 3 R <10s T/a pc with 12,800 pts | -
IM-Net [49] 0.00140 - - - 5 SVR - -
IM-Net [49] 0.00060 0.75 - - 5 AE - -
DeepSDF [50] 0.00030 - - - 5 AE 9.72s 1 0.0074(MS)
DeepSDF [50] 0.00160 - - - 3 C 9.72s 1 0.0074(MS)
IF-NET [56] 0.00002 0.88 - - 13 R - -
Occupancy Nets [45] 0.21500+ 0.57 - - 13 SVR 3s I/per mesh -
Occupancy Nets [45] 0.07900+ 0.77 - - 13 C 3s I/per mesh -
Conv onets [46] 0.04800+* 0.87 93.30 - 13 R - 5.9G Mem.

VII. DISCUSSION AND FUTURE TRENDS

In the previous sections, latest attempts towards 3D re-
construction using deep learning techniques were reviewed.
A summary and comparison of presented learning-based sur-
face reconstruction approaches can be found in Table [
Furthermore, Table contains a quantitative report about
the performance of some of the approaches on the ShapeNet
dataset. There is a qualitative gap between 3D models created
by learning-based approaches, and artist-created CAD mod-
els [43]] and there are still open problems in this scope. Some
of these challenges are listed below.

In the existing approaches, serious bottlenecks are caused by
computation time and generalization power. The requirement
of long training time is a drawback to the adoption of some
of the deep learning-based approaches. On the other hand,
there are concerns raised about the environmental impact of
prolonged training periods. To this end, designing models with
a reduced number of parameters, less complexity, and yet high
performance can be a target to hit. Additionally, the utilization
of transfer learning may serve as a partial solution. Regarding
the generalizability issue, methods with the capability of multi-
category generalization, i.e., generalizing well to other topol-
ogy categories, should be further investigated. One solution
might be to learn latent shape spaces which are not class-
specific. Consequently, as a future direction, moving toward
models with comparable shorter training time and stronger
generalizability can be an interesting yet reasonable strategy.

Current methods are highly dependent on an external super-
visor for annotating input data. Reducing the need for super-

vision is a desirable trait for a learning-based approach [40].
Furthermore, there are various large-scale datasets appropriate
for geometric deep learning tasks. However, there is still
need for creating datasets with richer 3D annotations that are
suitable for shape and surface reconstruction.

On the other hand, some of the current evaluation metrics
fall short in capturing surface properties accurately. Therefore,
it is necessary not to be limited to quantitative results but
to explore qualitative results to gain a deeper understanding
of surface details as well. Moreover, presenting better and
more robust evaluation metrics, which are at the same time
computationally efficient and less complex (in point cloud
comparison, chamfer distance has quadratic complexity for
instance), is another area that is essential to focus on.

In the context of volumetric methods, various challenges
exist that should be tackled. Because of the discretization
of data, some input information and details may partially be
lost. Cubic growth in memory and computational costs with
respect to resolution, and poor scalability of these methods
with resolution increase lead to difficulty in inferring high-
resolution outputs. Considering the influence of 3D resolution
on the performance of volumetric CNNs for instance, better
performance can be achieved by designing efficient volumetric
CNN architectures for instance, that are able to scale to higher
resolutions [129]].

For point-based approaches, current methods extract a fixed
and limited number of points from the point cloud dataset
and feed them to their network architecture, thus affecting
the output quality. Overcoming this limitation as well as
implementing models with the ability to handle variable-length



input can be ambitious yet interesting future directions.

In mesh-based approaches, it is challenging to define a
loss on meshes which is easy to optimize [34f]. One of
the limitations of patch-based approaches in the mesh-based
representation category that affects the reconstruction of fine
details is the usage of a fixed scale mesh patch [37]. A coarse-
to-fine approach and extracting mesh patches at different scales
might result in more precise outputs. On the other hand,
generating a closed shape using patch-based methods, as well
as recognizing and segmenting shapes using these methods are
issues that still require solutions [34].

Implicit neural representations have recently gained popu-
larity due to their performance and favorable properties. Exist-
ing isosurface extraction approaches used for extracting rep-
resentations from implicit neural representations are computa-
tionally intensive and thus comprise a bottleneck. Furthermore,
it may be worthwhile to combine sign-agnostic implicit neural
approaches with generative methods such as GANs [52].
Moreover, NeRF-based approaches mostly suffer from high
computational cost, long training time, and inability to share
knowledge between various scenes thus being scene-specific
networks. The necessity for more input images in order to have
high-quality outputs should be alleviated. Improving NeRF-
based methods’ time and computation efficiency, their gener-
alizability to unseen scenes, and their surface reconstruction
ability can be important research questions.

In general, reducing the performance gap between synthetic
and real-world data, proposing better and more representative
evaluation metrics for quantifying shape reconstruction anal-
ysis results [49]], conducting research in the challenging task
of scene-level reconstruction, empowering proposed methods
with multi-scale reconstruction (coarse-to-fine manner) [48]],
implementing and employing methods for capturing high-
frequency details with the purpose of reconstructing thin
parts of a scene or object in high-quality, considering the
equivariance concept for designing a neural network, and
fusing different approaches mentioned in Fig. [] in order to
enjoy the benefits of them simultaneously, are aspects that
should not be ignored in future studies. Additionally, the
application of transformer architectures [210], i.e., a deep
learning model that is based on the self-attention mechanism,
seems to be promising in 3D vision [239241]. On the other
hand, self-supervised learning [242]], which is a technique
for predicting unobserved or hidden part of the input from
observed or not hidden part of the input, can be one of
the interesting approaches for solving reconstruction and in
general computer vision problems with low quality and a
limited amount of data. Furthermore, considering the current
interest, diffusion models [243H246] which learn to infer
and generate a meaningful output from pure noise, seem to
be another exciting approach to be used in 3D generation,
completion, and reconstruction [247, 248|.

It is equally expected that surface reconstruction applica-
tions play an increasingly important role. One of the major
uses will be in observational remote sensing-related disci-
plines where surface reconstruction will aid in archaeologi-
cal discoveries, agriculture, disaster prevention and response,
and cartography. Equally, design- or projection-based appli-
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cations have great utilization potential for learned surface
reconstruction, including but not limited to, 3D modeling
in games and movies, architecture, or CAD. Yet, all of the
aforementioned scenarios are considering only (close to) static
surfaces. The anticipation is that accurate reconstruction of
dynamically changing objects and environments, non-rigid
objects or scenes, textureless regions as well as transparent
objects, and overcoming the challenges of rarely visible re-
gions, occlusions, shadows, and holes in an object or scene
will be crucial and consequential next steps in this field of
study. Overall, more applications of neural learning approaches
will emerge for surface reconstruction, especially in SFX and
VEX animation, human reconstruction, robotics, autonomous
driving, and medicine.

VIII. SUMMARY AND CONCLUSION

In this paper, we provided a review of the state-of-the-
art approaches for learning-based 3D surface reconstruction.
We have taken no special perspective, making the manuscript
accessible not only to method researchers, but also to applied
users seeking to contextualize these approaches for their
domains.

For this, we have reiterated commonly used open and
accessible benchmarking datasets, different input and output
data modalities, and some acquisition techniques. To make
processing results comparable, we have highlighted widely
used metrics for evaluating learned models, and detailed their
particularities.

The main part of the paper has introduced deep learning-
based 3D surface reconstruction approaches. In summary,
these can be classified into four major categories based on their
output representations: 1) voxel-based, 2) point-based repre-
sentation, 3) mesh-based, and 4) implicit neural. For each of
the categories, we listed some well-known methods, explaining
their contributions, challenges, strengths and weaknesses.

Although, 3D deep surface reconstruction has made im-
pressive progress over the last few years, there are several
remaining challenges. The following non-exhaustive list will
highlight the major open issues:

« Computation time

« Generalizability

« Energy consumption and environmental impact

« Representation compression

« Resolution

o Water tightness

« Non-rigid, dynamic, or transparent object reconstruction

o Reconstruction of rarely visible or occluded regions,
shadows, and holes in an object or a scene

Towards the end of the paper, we discussed current chal-
lenges and possible future trends in deep 3D surface recon-
struction. We assume that coming research will put a strong
emphasis on self-attention-based models due to their excelling
performance in deep learning in general and 2D computer
vision problems, i.e., Vision Transformer and its derivatives, in
particular. Moreover, self-supervision will be a strong commu-
nity focus due to its ability to not only improve reconstructive
performance overall, but also to leverage small and potentially



domain-specific datasets. The application of diffusion models
seems to be a promising direction as well. Finally, albeit a
niche setting, the quantification of reconstruction uncertainties
will be of utmost importance for safety-critical applications as
well as certain scientific application settings.
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