001017990 001__ 1017990
001017990 005__ 20250129094157.0
001017990 0247_ $$2doi$$a10.1038/s41467-023-43042-3
001017990 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04460
001017990 0247_ $$2pmid$$a37951946
001017990 0247_ $$2WOS$$aWOS:001133760900002
001017990 037__ $$aFZJ-2023-04460
001017990 041__ $$aEnglish
001017990 082__ $$a500
001017990 1001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, M.$$b0$$eCorresponding author
001017990 245__ $$aTopological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn5Ge3
001017990 260__ $$a[London]$$bNature Publishing Group UK$$c2023
001017990 3367_ $$2DRIVER$$aarticle
001017990 3367_ $$2DataCite$$aOutput Types/Journal article
001017990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716798882_4486
001017990 3367_ $$2BibTeX$$aARTICLE
001017990 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017990 3367_ $$00$$2EndNote$$aJournal Article
001017990 520__ $$aThe phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn5Ge3 hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the c-axis with an applied magnetic field. Hence, Mn5Ge3 realizes a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons. More generally, our experimental route to verify and control the topological character of the magnons is applicable to bulk centrosymmetric hexagonal materials, which calls for systematic investigation.
001017990 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001017990 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001017990 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x2
001017990 536__ $$0G:(GEPRIS)360506545$$aDFG project 360506545 - SPP 2137: Skyrmionics: Topologische Spin-Phänomene im Realraum für Anwendungen (360506545)$$c360506545$$x3
001017990 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017990 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001017990 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
001017990 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001017990 693__ $$0EXP:(DE-Juel1)ILL-IN12-20150421$$5EXP:(DE-Juel1)ILL-IN12-20150421$$eILL-IN12: Cold neutron 3-axis spectrometer$$x0
001017990 7001_ $$0P:(DE-Juel1)180764$$aBiniskos, Nikolaos$$b1$$eCorresponding author
001017990 7001_ $$0P:(DE-Juel1)162449$$ados Santos, F. J.$$b2$$eCorresponding author
001017990 7001_ $$0P:(DE-Juel1)130943$$aSchmalzl, K.$$b3
001017990 7001_ $$0P:(DE-Juel1)130884$$aPerßon, Jörg$$b4
001017990 7001_ $$0P:(DE-HGF)0$$aBourdarot, F.$$b5
001017990 7001_ $$0P:(DE-HGF)0$$aMarzari, N.$$b6
001017990 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b7
001017990 7001_ $$0P:(DE-Juel1)130572$$aBrückel, T.$$b8
001017990 7001_ $$0P:(DE-Juel1)130805$$aLounis, S.$$b9
001017990 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-023-43042-3$$gVol. 14, no. 1, p. 7321$$n1$$p7321$$tNature Communications$$v14$$x2041-1723$$y2023
001017990 8564_ $$uhttps://juser.fz-juelich.de/record/1017990/files/s41467-023-43042-3.pdf$$yOpenAccess
001017990 8767_ $$8SN-2023-00880-b$$92024-02-08$$a1200200905$$d2024-02-14$$eAPC$$jZahlung erfolgt
001017990 8767_ $$8SN-2023-00880-b$$92024-02-08$$d2024-02-14$$eAPC$$jZahlung angewiesen$$zKostenteilung PGI/JCNS-2
001017990 909CO $$ooai:juser.fz-juelich.de:1017990$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b0$$kFZJ
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180764$$aForschungszentrum Jülich$$b1$$kFZJ
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130943$$aForschungszentrum Jülich$$b3$$kFZJ
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130884$$aForschungszentrum Jülich$$b4$$kFZJ
001017990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Université Grenoble Alpes, CEA, IRIG, MEM, MDN, F-38000, Grenoble, France$$b5
001017990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory for Materials Simulations, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland$$b6
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b7$$kFZJ
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b8$$kFZJ
001017990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b9$$kFZJ
001017990 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001017990 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001017990 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x2
001017990 9141_ $$y2023
001017990 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001017990 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001017990 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001017990 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001017990 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:09:09Z
001017990 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:09:09Z
001017990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017990 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
001017990 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017990 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2023-05-02T09:09:09Z
001017990 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001017990 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
001017990 920__ $$lyes
001017990 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001017990 9201_ $$0I:(DE-Juel1)JCNS-ILL-20110128$$kJCNS-ILL$$lJCNS-ILL$$x1
001017990 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
001017990 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
001017990 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x4
001017990 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x5
001017990 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x6
001017990 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x7
001017990 9801_ $$aAPC
001017990 9801_ $$aFullTexts
001017990 980__ $$ajournal
001017990 980__ $$aVDB
001017990 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001017990 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
001017990 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001017990 980__ $$aI:(DE-82)080009_20140620
001017990 980__ $$aI:(DE-Juel1)PGI-4-20110106
001017990 980__ $$aI:(DE-Juel1)IAS-1-20090406
001017990 980__ $$aI:(DE-Juel1)PGI-1-20110106
001017990 980__ $$aI:(DE-588b)4597118-3
001017990 980__ $$aAPC
001017990 980__ $$aUNRESTRICTED
001017990 981__ $$aI:(DE-Juel1)JCNS-2-20110106