001     1018014
005     20240712100822.0
024 7 _ |a 10.5194/acp-23-10439-2023
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04484
|2 datacite_doi
024 7 _ |a WOS:001161805100001
|2 WOS
037 _ _ |a FZJ-2023-04484
082 _ _ |a 550
100 1 _ |a Fadnavis, Suvarna
|0 0000-0003-4442-0755
|b 0
|e Corresponding author
245 _ _ |a Air pollution reductions caused by the COVID-19 lockdown open up a way to preserve the Himalayan glaciers
260 _ _ |a Katlenburg-Lindau
|c 2023
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701329864_22501
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The rapid melting of glaciers in the Hindu Kush Himalayas (HKH) during recent decades poses an alarming threat to water security for larger parts of Asia. If this melting persists, the entirety of the Himalayan glaciers are estimated to disappear by end of the 21st century. Here, we assess the influence of the spring 2020 COVID-19 lockdown on the HKH, demonstrating the potential benefits of a strict emission reduction roadmap. Chemistry–climate model simulations, supported by satellite and ground measurements, show that lower levels of gas and aerosol pollution during lockdown led to changes in meteorology and to a reduction in black carbon in snow (2 %–14 %) and thus a reduction in snowmelt (10 %–40 %). This caused increases in snow cover (6 %–12 %) and mass (2 %–20 %) and a decrease in runoff (5 %–55 %) over the HKH and Tibetan Plateau, ultimately leading to an enhanced snow-equivalent water (2 %–55 %). We emphasize the necessity for immediate anthropogenic pollution reductions to address the hydro-climatic threat to billions of people in southern Asia.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Heinold, Bernd
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sabin, T. P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kubin, Anne
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Huang, Katty
|0 0000-0002-4292-2105
|b 4
700 1 _ |a Rap, Alexandru
|0 0000-0002-2319-6769
|b 5
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 6
773 _ _ |a 10.5194/acp-23-10439-2023
|g Vol. 23, no. 18, p. 10439 - 10449
|0 PERI:(DE-600)2069847-1
|n 18
|p 10439 - 10449
|t Atmospheric chemistry and physics
|v 23
|y 2023
|x 1680-7316
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1018014/files/acp-23-10439-2023.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1018014/files/acp-23-10439-2023.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1018014/files/acp-23-10439-2023.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1018014/files/acp-23-10439-2023.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1018014/files/acp-23-10439-2023.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1018014
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129138
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:38:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21