001018031 001__ 1018031
001018031 005__ 20250204113738.0
001018031 0247_ $$2doi$$a10.1093/noajnl/vdad151
001018031 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04494
001018031 0247_ $$2pmid$$a38196739
001018031 0247_ $$2WOS$$aWOS:001138535600001
001018031 037__ $$aFZJ-2023-04494
001018031 082__ $$a610
001018031 1001_ $$0P:(DE-Juel1)184842$$aFriedrich, Michel$$b0$$ufzj
001018031 245__ $$aStructural connectome-based predictive modeling of cognitive deficits in treated glioma patients
001018031 260__ $$aOxford$$bOxford University Press$$c2024
001018031 3367_ $$2DRIVER$$aarticle
001018031 3367_ $$2DataCite$$aOutput Types/Journal article
001018031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712842610_22452
001018031 3367_ $$2BibTeX$$aARTICLE
001018031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018031 3367_ $$00$$2EndNote$$aJournal Article
001018031 520__ $$aAbstractBackground. In glioma patients, tumor growth and subsequent treatments are associated with various types ofbrain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintainedstructural connectivity of multiple brain networks.Methods. The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative OncologyGroup performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy. Cognitive performance was assessedby 10 tests in 5 cognitive domains at a median of 14 months after treatment initiation. Hybrid aminoacid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advancedtractography were used to generate whole-brain fiber count-weighted connectivity matrices. The matrices were appliedto a cross-validated machine-learning model to identify predictive fiber connections (edges), critical corticalregions (nodes), and the networks underlying cognitive performance.Results. Compared to healthy controls (n = 121), patients’ cognitive scores were significantly lower in 9 cognitivetests. The models predicted the scores of 7/10 tests (median correlation coefficient, 0.47; range, 0.39–0.57) from0.6% to 5.4% of the matrix entries; 84% of the predictive edges were between nodes of different networks. Criticallyinvolved cortical regions (≥10 adjacent edges) included predominantly left-sided nodes of the visual, somatomotor,dorsal/ventral attention, and default mode networks. Highly critical nodes (≥15 edges) included the default modenetwork’s left temporal and bilateral posterior cingulate cortex.Conclusions. These results suggest that the cognitive performance of pretreated glioma patients is strongly relatedto structural connectivity between multiple brain networks and depends on the integrity of known networkhubs also involved in other neurological disorders.
001018031 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001018031 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001018031 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018031 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian P.$$b1$$ufzj
001018031 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b2$$ufzj
001018031 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b3$$ufzj
001018031 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b4$$ufzj
001018031 7001_ $$0P:(DE-HGF)0$$aLucas, Carolin Weiss$$b5
001018031 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I.$$b6
001018031 7001_ $$0P:(DE-HGF)0$$aJon Shah, N.$$b7
001018031 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b8$$ufzj
001018031 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b9$$ufzj
001018031 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b10$$ufzj
001018031 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b11
001018031 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b12$$eCorresponding author
001018031 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdad151$$gVol. 6, no. 1, p. vdad151$$n1$$pvdad151$$tNeuro-oncology advances$$v6$$x2632-2498$$y2024
001018031 8564_ $$uhttps://juser.fz-juelich.de/record/1018031/files/Invoice_SOA23LT002269.pdf
001018031 8564_ $$uhttps://juser.fz-juelich.de/record/1018031/files/vdad151.pdf$$yOpenAccess
001018031 8564_ $$uhttps://juser.fz-juelich.de/record/1018031/files/vdad151.gif?subformat=icon$$xicon$$yOpenAccess
001018031 8564_ $$uhttps://juser.fz-juelich.de/record/1018031/files/vdad151.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018031 8564_ $$uhttps://juser.fz-juelich.de/record/1018031/files/vdad151.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018031 8564_ $$uhttps://juser.fz-juelich.de/record/1018031/files/vdad151.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018031 8767_ $$8SOA23LT002269$$92023-11-14$$a1200200370$$d2024-01-24$$eAPC$$jZahlung erfolgt$$zFZJ-Mail Adresse wird noch eingetragen
001018031 909CO $$ooai:juser.fz-juelich.de:1018031$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184842$$aForschungszentrum Jülich$$b0$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b1$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b2$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b3$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b4$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b8$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b11$$kFZJ
001018031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b12$$kFZJ
001018031 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001018031 9141_ $$y2024
001018031 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001018031 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001018031 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001018031 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001018031 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001018031 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001018031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018031 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001018031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOL ADV : 2022$$d2024-12-18
001018031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001018031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001018031 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:37:56Z
001018031 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:37:56Z
001018031 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:37:56Z
001018031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001018031 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-18
001018031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001018031 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001018031 920__ $$lyes
001018031 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001018031 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
001018031 980__ $$ajournal
001018031 980__ $$aVDB
001018031 980__ $$aUNRESTRICTED
001018031 980__ $$aI:(DE-Juel1)INM-3-20090406
001018031 980__ $$aI:(DE-Juel1)INM-4-20090406
001018031 980__ $$aAPC
001018031 9801_ $$aAPC
001018031 9801_ $$aFullTexts