001     1018031
005     20250204113738.0
024 7 _ |a 10.1093/noajnl/vdad151
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04494
|2 datacite_doi
024 7 _ |a 38196739
|2 pmid
024 7 _ |a WOS:001138535600001
|2 WOS
037 _ _ |a FZJ-2023-04494
082 _ _ |a 610
100 1 _ |a Friedrich, Michel
|0 P:(DE-Juel1)184842
|b 0
|u fzj
245 _ _ |a Structural connectome-based predictive modeling of cognitive deficits in treated glioma patients
260 _ _ |a Oxford
|c 2024
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712842610_22452
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a AbstractBackground. In glioma patients, tumor growth and subsequent treatments are associated with various types ofbrain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintainedstructural connectivity of multiple brain networks.Methods. The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative OncologyGroup performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy. Cognitive performance was assessedby 10 tests in 5 cognitive domains at a median of 14 months after treatment initiation. Hybrid aminoacid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advancedtractography were used to generate whole-brain fiber count-weighted connectivity matrices. The matrices were appliedto a cross-validated machine-learning model to identify predictive fiber connections (edges), critical corticalregions (nodes), and the networks underlying cognitive performance.Results. Compared to healthy controls (n = 121), patients’ cognitive scores were significantly lower in 9 cognitivetests. The models predicted the scores of 7/10 tests (median correlation coefficient, 0.47; range, 0.39–0.57) from0.6% to 5.4% of the matrix entries; 84% of the predictive edges were between nodes of different networks. Criticallyinvolved cortical regions (≥10 adjacent edges) included predominantly left-sided nodes of the visual, somatomotor,dorsal/ventral attention, and default mode networks. Highly critical nodes (≥15 edges) included the default modenetwork’s left temporal and bilateral posterior cingulate cortex.Conclusions. These results suggest that the cognitive performance of pretreated glioma patients is strongly relatedto structural connectivity between multiple brain networks and depends on the integrity of known networkhubs also involved in other neurological disorders.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Filss, Christian P.
|0 P:(DE-Juel1)141877
|b 1
|u fzj
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 2
|u fzj
700 1 _ |a Mottaghy, Felix M.
|0 P:(DE-Juel1)132318
|b 3
|u fzj
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 4
|u fzj
700 1 _ |a Lucas, Carolin Weiss
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ruge, Maximilian I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jon Shah, N.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 8
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 9
|u fzj
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 10
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 11
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 12
|e Corresponding author
773 _ _ |a 10.1093/noajnl/vdad151
|g Vol. 6, no. 1, p. vdad151
|0 PERI:(DE-600)3009682-0
|n 1
|p vdad151
|t Neuro-oncology advances
|v 6
|y 2024
|x 2632-2498
856 4 _ |u https://juser.fz-juelich.de/record/1018031/files/Invoice_SOA23LT002269.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1018031/files/vdad151.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1018031/files/vdad151.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1018031/files/vdad151.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1018031/files/vdad151.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1018031/files/vdad151.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1018031
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173675
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOL ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21