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Abstract 
Background.   In glioma patients, tumor growth and subsequent treatments are associated with various types of 
brain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintained 
structural connectivity of multiple brain networks.
Methods.   The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative Oncology 
Group performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy. Cognitive performance was as-
sessed by 10 tests in 5 cognitive domains at a median of 14 months after treatment initiation. Hybrid amino 
acid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advanced 
tractography were used to generate whole-brain fiber count-weighted connectivity matrices. The matrices were ap-
plied to a cross-validated machine-learning model to identify predictive fiber connections (edges), critical cortical 
regions (nodes), and the networks underlying cognitive performance.
Results.   Compared to healthy controls (n = 121), patients’ cognitive scores were significantly lower in 9 cognitive 
tests. The models predicted the scores of 7/10 tests (median correlation coefficient, 0.47; range, 0.39–0.57) from 
0.6% to 5.4% of the matrix entries; 84% of the predictive edges were between nodes of different networks. Critically 
involved cortical regions (≥10 adjacent edges) included predominantly left-sided nodes of the visual, somatomotor, 
dorsal/ventral attention, and default mode networks. Highly critical nodes (≥15 edges) included the default mode 
network’s left temporal and bilateral posterior cingulate cortex.
Conclusions.   These results suggest that the cognitive performance of pretreated glioma patients is strongly re-
lated to structural connectivity between multiple brain networks and depends on the integrity of known network 
hubs also involved in other neurological disorders.

Structural connectome-based predictive modeling of 
cognitive deficits in treated glioma patients  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Key Points

• Cognitive performance is closely related to structural connectivity between  
multiple brain networks.

• Critically affected cortical nodes are mainly located in the left hemisphere.

• Involvement of bilateral cortical hubs known from other neurological disorders.

Graphical Abstract 
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Gliomas are the most common malignant primary brain 
tumors in adults.1 The prognosis of patients with gliomas 
mainly depends on molecular and histomorphologic tumor 
features that determine the growth rate and pattern of in-
vasion into the normal brain tissue.2 Apart from a reduced 
survival time, glioma patients frequently experience dis-
turbances of cognitive function3 that are potentially related 
to the structural damage imposed on the brain by the tumor 
itself or therapeutic interventions. Compared to other neu-
rological disorders, such as stroke, multiple sclerosis, or 

dementia, the pattern of brain lesions in glioma patients 
is more heterogeneous, as it may comprise brain infiltra-
tion by residual or recurrent tumor growth, disruption of 
the blood-brain barrier, neurosurgical resection of cortical 
or subcortical brain tissue, or radiation- or chemotherapy-
induced damage of white matter.4

So far, clinical research in neuro-oncology has prima-
rily aimed at identifying selected vulnerable structures at 
risk of neurologic or cognitive deficits, such as the motor 
or language pathways (neurosurgery) or the hippocampus 

Importance of the Study

We here studied the association of whole-brain 
structural connectivity with cognitive performance 
in pretreated CNS WHO Grade 3 or 4 glioma pa-
tients through a network-based approach that in-
cluded a recent cortical parcellation, advanced 
tractography methods, and a well-established method 
for connectome-based predictive modeling. We found 
that reduced fiber numbers in subsets of connections 
between different brain networks were significantly 
related to performance in various cognitive domains. 

Critical cortical regions, identified by their adjacency to 
predictive connections, were mainly located in the left 
hemisphere but also included bilateral cortical hubs, 
such as the precuneus and posterior cingulate cortex, 
which also play a significant role in other neurolog-
ical diseases such as Alzheimer’s disease. This finding 
implies that cognitive decline in treated brain tumor 
patients shares a common mechanism with other psy-
chiatric and neurological disorders.
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(radiation therapy),5 which in turn are preferably spared 
from treatment-related damage. The relationship between 
white matter alterations and cognitive deficits in glioma 
patients has been mainly established in the perioperative 
setting where single, anatomically defined tracts and their 
associated functions were identified. These include, among 
others, the right frontal aslant tract (executive functions, 
attention shift, verbal fluency),6 the right superior longi-
tudinal fascicle/frontostriatal tract/orbitofrontal cortex 
(mentalizing/visuospatial function),7–10 and the right infe-
rior frontostriatal tract/inferior frontal gyrus (inference con-
trol processes).11 Moreover, radiation-induced alterations 
in the parahippocampal cingulum of the medial temporal 
lobes correlated with a decline in verbal memory and 
verbal fluency.12

However, a growing body of evidence indicates that the 
long-term outcome of higher-order cognitive functioning 
in glioma patients depends on the preserved integrity of 
several distributed networks rather than individual nodes 
or tracts,13–16 which has led several groups to investigate 
the relation between cognitive outcome and structural 
connectivity in glioma on a more network-oriented level.17–

19 We also took this approach here and hypothesized that 
the various structural brain lesions in treated glioma pa-
tients impair cognitive functions through a common 
mechanism, namely the reduced structural connectivity 
between cortical regions, resulting from altered integrity of 
the cortical gray matter or the adjacent white matter fiber 
tracts. Therefore, we constructed whole-brain structural 
connectomes in pretreated patients with CNS WHO Grade 
3 or 4 gliomas characterized according to the 2021 WHO 
classification of Tumors of the CNS,2 and used advanced 
structural and diffusion-weighted MRI20 as well as amino 
acid PET21 imaging techniques to identify fiber tracts and 
structural brain lesions. In addition, a recent functional 
parcellation of the cortex22 and tractography tools capable 
of reasonable fiber tracking within or close to tumor- or 
treatment-related lesions were applied.23,24 The individual 
connectomes were used to develop a predictive machine-
learning-based model25 that identified networks, nodes, 
and connecting fiber tracts critical for performance in dif-
ferent cognitive domains.

Patients and Methods

Patient Characteristics

From February, 2018 to September, 2020, we prospec-
tively evaluated 121 pretreated glioma patients (73 men, 
48 women; mean age, 51.6 ± 11.6 years) who had under-
gone multimodal therapy, including resection, radio-
therapy, alkylating chemotherapy, or combinations thereof 
(Supplementary Table 1). Patients were referred for follow-up 
from main academic institutions that had regular access to 
the 3T hybrid PET/MR imaging facility where simultaneous 
PET/MR imaging was performed using the radiolabeled 
amino acid O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) at dif-
ferent time points after first-line therapy (median time, 14 
months; range, 1–214 months). 18F-FET PET is a sensitive 
method for early assessment of residual metabolically active 

tumors after surgery, evaluation of response to adjuvant che-
motherapy using alkylating agents, and differentiation of 
tumor relapse from treatment-related changes.26

The inclusion criteria comprised a favorable general con-
dition defined by a performance score of 0 or 1 according to 
the Eastern Cooperative Oncology Group27 criteria, absence 
of major depression, and fluency in the German language. 
In case of a history of seizures, appropriate anticonvulsive 
medication was mandatory. Patients were screened and 
registered for the study by phone calls, reviewed on the 
day of imaging, and were included in the study after pro-
viding informed written consent following the Declaration 
of Helsinki. The local ethics committee approved the pro-
tocol (17–365). Of the 121 patients included, 104 (86%) had 
completed primary treatment according to the guidelines 
at the time of diagnosis. As shown in Supplementary Table 
1, patients had either received tumor resection (n = 108) or 
biopsy (n = 13), and the majority (n = 100) had undergone 
at least 1 series of local radiotherapy (60 ± 2 Gy in 92% of 
patients) at a median interval of 13 months (range, 2–213 
months) between the start of radiotherapy and imaging. 
Fourteen patients had 2 radiotherapy series. In 6 patients, 
planned postoperative radiotherapy/chemo-radiotherapy 
was pending; in 11 patients, adjuvant chemotherapy was 
incomplete. In order to quantify treatment intensity, the 
number of different types of oncologic interventions was 
assessed and analyzed about cognitive outcome.

The study included patients with adult-type diffuse 
glioma of Grades 3 and 4 according to the 2021 WHO clas-
sification.2 All original neuropathological reports were 
re-classified mainly based on the isocitrate dehydrogenase 
(IDH)-gene mutation and 1p/19q loss-of-heterozygosity 
status. Most of the patients suffered from an IDH-wildtype 
glioblastoma (60%), but CNS WHO Grade 3 IDH-mutant 
astrocytomas (12%) and CNS WHO Grade 3 IDH-mutant 
1p/19q co-deleted oligodendrogliomas (11%) were also 
prevalent. A total of 72 patients (60%) had anticonvulsive 
medication, and 81 patients (67%) had mild neurolog-
ical (48%) or other symptoms (19%) without requiring as-
sistance for personal needs. All patients except 1 were 
right-handed. Based on clinical deterioration, MRI findings, 
and 18F-FET PET results, the diagnosis of glioma relapse 
was obtained in 58 of 121 patients.

Imaging Protocols

Simultaneous MR/PET imaging was performed on a 3T 
hybrid scanner (Siemens Trim-TRIO/BrainPET, Siemens 
Medical Systems, Erlangen, Germany) equipped with a 
PET insert.  18F-FET PET images were obtained as described 
in detail before.28 The presence or absence of metabolic 
active residual/recurrent tumor sites was assessed by a 
nuclear medicine physician (K.-J.L.) from the summed ac-
tivity from 20 to 40 min post-injection and the time-activity 
curves according to established protocols.26

The MRI protocol comprised a 3D high-resolution 
T1-weighted magnetization-prepared rapid acquisition 
gradient echo (MPRAGE) native scan (176 slices; TR = 2250 
ms; TE = 3.03 ms; field of view (FoV) = 256 × 256 mm2; 
flip angle = 9°; voxel size = 1 × 1 × 1 mm3), a contrast-
enhanced MPRAGE scan recorded after injection of 
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gadolinium-based contrast agent, a T2-weighted sam-
pling perfection with application-optimized contrasts 
using different flip angle evolution (SPACE) scan (176 
slices; repetition time TR = 3.2 ms; echo time TE = 417 
ms; FoV = 256 × 256 mm2; voxel size = 1 × 1 × 1 mm3), 
and a T2-weighted fluid-attenuated inversion recovery 
(T2/FLAIR) scan (25 slices; TR = 9000 ms; TE = 3.86 
ms; FoV = 220 × 220 mm2; flip angle = 150°; voxel 
size = 0.9 × 0.9 × 4 mm3).

High-angular-resolution diffusion imaging (HARDI) 
measurements were acquired using a diffusion-weighted 
double-echo echo-planar imaging (EPI) sequence (55 
slices; TR = 8000 ms; TE = 112 ms; b-values (gradient dir-
ections) = 0 (13, interleaved) and 2700 s/mm2 (120); voxel 
size = 2.4 × 2.4 × 2.4 mm3). Afterward, a nondiffusion-
weighted (b = 0) volume was acquired with the same 
parameters but with a reversed phase-encoding direction 
needed for the EPI distortion correction.

Cognitive Performance

Cognitive performance was assessed on the day of im-
aging and based on 10 cognitive tests selected from a 
more extensive test battery developed for the 1000BRAINS 
study, a population-based cohort study that included over 
1300 older subjects and investigated environmental and 
genetic influences on the interindividual variability of brain 
structure, function, and connectivity in the aging brain.20 
The applied test and the respective cognitive domains 
are shown in Supplementary Table 2. They included tests 
for attention/processing speed (Trail-making Test A [TMT-
A]), executive function/concept shifting (Trail-making Test 
B [TMT-B]), semantic word fluency (Imagined Shopping 
Tour) and language processing (Number Transcoding), 
as well as tests for verbal working memory (Digit Span 
forward/backward), verbal episodic memory (Word List, 
immediate and delayed recall) and visuospatial working 
memory (Corsi Block Tapping test forward/backward).

For the generation of a control group, 121 healthy subjects 
who had performed the same cognitive tests were selected 
from the 1000BRAINS study. Propensity score matching29 
(R software package, https://www.r-project.org/) was ap-
plied to build a cohort that matched the patient population 
in terms of sex, age, and educational level according to the 
International Standard Classification of Education (ISCED) 
classification (http://uis.unesco.org/sites/default/files/docu-
ments/international-standard-classification-of-education-
1997-en_0.pdf). This procedure resulted in a control group 
that broadly resembled the patient group (age 51.7 ± 11.5 vs 
51.6 ± 11.6 years, 2-sided t-test P = .96; men/women 75/46 vs 
73/48, 2-sided Chi-square test P = .90; ISCED-level 7.4 ± 1.7 
vs 7.1 ± 2.1, 2-sided Mann–Whitney U-test P = .41). The cog-
nitive deficits of the patients were classified as clinically 
relevant if their scores were lower than the mean—1.5× 
standard deviation of the control group.

Whole-brain Structural Connectome

The main steps for determining the whole-brain structural 
connectome and prediction modeling of cognitive perfor-
mance are shown in Figure 1. We used the tractography 

imaging pipeline based on the GitHub-fork MRtrix3Tissue 
(https://3tissue.github.io), a recently developed modi-
fication of the widely accepted fiber-tracking software 
MRtrix3 (https://www.mrtrix.org). The novel single-shell 
3-tissue constrained spherical deconvolution (SS3T-CSD) 
method generates estimates of white matter fiber orien-
tation distribution functions (FODs) as bias-free as pos-
sible, even within different compartments infiltrated by 
the tumor.23,30,31 This is mainly achieved by estimating the 
composition of each voxel in terms of white-matter-like, 
gray-matter-like, and cerebrospinal fluid-like tissue compo-
nents, which are computed from single-shell HARDI data 
(single b-value 2700 s/mm2 and nondiffusion-weighted 
images). CSD-based fiber mapping assumes that the 
diffusion-weighted MRI signal results from the spherical 
convolution of a response function with the underlying 
FOD function.32 The response function, which is deter-
mined from the diffusion-weighted data itself, represents 
the expected MR signal from a pure white matter (a single-
oriented white matter fiber bundle), gray matter, or cere-
brospinal fluid voxel. Unlike the clinically widely used 
diffusion tensor model, CSD models can resolve multiple 
fiber orientations within an image voxel.

The HARDI data underwent image preprocessing fol-
lowing published recommendations (https://osf.io/ht7zv) 
and comprised corrections for EPI distortion, eddy current, 
motion distortion, and bias field. An unsupervised method 
was used to estimate the tissue-specific white matter, 
gray matter, and cerebrospinal fluid response functions 
from the preprocessed HARDI data. The response func-
tions for each tissue compartment were averaged across 
all patients, and the tissue component fractions were cor-
rected for the effects of residual intensity inhomogeneities 
by global intensity normalization33 to ensure that FODs 
estimated by SS3T-CSD30 were comparable within this 
group study. The subsequent fiber mapping was based 
on Anatomically Constrained  Tractography, which poses 
physiological restrictions on the behavior of healthy 
neuronal fibers in terms of their propagation and termi-
nation.24 These assumptions were lifted in the area of 
pathologic tissue by masking out the entire lesioned areas. 
For this purpose, resection cavities were manually con-
toured by a radiation oncologist (M.K.), the T1-contrast-
enhancing lesions and T2/FLAIR hyperintensities were 
automatically segmented using the deep-learning-based 
software HD-GLIO-AUTO (https://github.com/NeuroAI-HD/
HD-GLIO-AUTO), and 18F-FET PET segmentation was im-
plemented by an FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) 
custom script using a tumor-to-brain ratio of 1.6 (20–40 min 
summed activity) as the lower threshold.34 All segmenta-
tions were visually inspected, manually corrected, and 
added to form a composite lesion mask. Besides the de-
fault settings of MRtrix3Tissue, the number of seed points 
was set to a constant of 4 million seeds randomly placed 
in a whole-brain mask, the backtrack option was enabled, 
and the cutoff value for FOD amplitude was set to 0.01. In 
a former study,4 we found that this setup could reasonably 
identify fibers passing through and near tumor tissue and 
the surrounding brain structures.

In order to obtain structural whole-brain connectivity 
matrices for each patient, the resulting set of fibers was 
combined with the functional cortical Schaefer-Yeo Atlas,22 
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which comprises 100 nodes (50 in each hemisphere) at 
its lowest resolution, belonging to the following 7 net-
works: visual, somatomotor, dorsal attention, ventral at-
tention, limbic, frontal control, and default mode network. 
The number of fibers connecting any 2 nodes was used to 
enter a 100 × 100 structural connectivity matrix, thus rep-
resenting the edge weight between 2 nodes. Whole-brain 
tractography and structural connectivity matrices for 2 
exemplary patients with left frontal and right temporal 
gliomas are shown in Figure 2.

Connectome-based Predictive Modeling

The relationship between structural brain connectivity and 
cognitive functions was analyzed using a well-established 
method (connectome-based predictive modeling [CPM]) 
initially described by Shen et al.25 that uses machine-
learning methods and cross-validation to predict behav-
ioral outcomes from brain connectivity measures. CPM 
has been proven to perform equally or better compared to 
many existing approaches in brain-behavior prediction.25 

Also, compared to other machine-learning models, it has 
the advantages that it makes only use of linear operations, 
is purely data-driven, and can be clearly interpreted.

The CPM protocol comprises 4 steps which were per-
formed in Matlab (Matlab R2022a, MathWorks, Natick, 
MA, USA). The structural connectivity matrices and cor-
responding cognitive test scores served as inputs. The 
main diagonal containing 100 meaningless entries was 
removed from the matrices for all further steps, leaving 
([100 × 100]−100) = 9900 valid entries. For feature selec-
tion (i), each fiber count (edge weight) in the connectivity 
matrix was related to any of the cognitive test scores 
using Spearman’s rank correlation, and only significant 
(P < .001) edges were selected. Next, summary connec-
tivity values (ii) were calculated from the selected edges 
by separately summing the fiber counts of edges with neg-
ative or positive associations with the cognitive scores. 
For model construction (iii), linear regressions between 
the cognitive scores and the summary connectivity scores 
were computed. Furthermore, the relation between dem-
ographic, clinical, histomolecular and other tumor-related 
variates and cognitive performance was evaluated at this 
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Figure 1.  Overview of methods for determining the whole-brain structural connectome and generating and validating a connectome-based pre-
dictive model (CPM) for cognitive functioning in glioma patients following multimodality treatment. SS3T-CSD, single-shell 3-tissue constrained 
spherical deconvolution; WM, white matter; FOD, fiber orientation distribution function; DWI, diffusion-weighted magnetic resonance imaging; 
GM, gray matter; CSF, cerebrospinal fluid; ACT, Anatomically Constrained Tractography; Pts, patients; Pat, patient.
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step by nonparametric statistical methods: age, educa-
tion, time since treatment initiation, number of surgical 
interventions, number of radiotherapy series, number of 
chemotherapy courses, lesion volumes (Spearman rank 
correlation); sex, IDH mutation status (wildtype vs mutant), 
glioma Grade 3 versus Grade 4, presence of a recurrent 
tumor (Mann–Whitney U-Test); tumor location (Kruskal–
Wallis analysis of variance). Univariate and multivariate 
models were constructed where the significant variables 
from this analysis were included in the CPM model as con-
founding covariates. Finally, the model’s generalizability 
and predictive power (iv) were evaluated by leave-one-out 
cross-validation. The cognitive scores for each single pa-
tient were predicted using the described feature (edge) se-
lection method and linear regression from the data of the 
remaining patients. The predicted scores were then com-
pared to the patient’s actual scores using both Pearson cor-
relation and a permutation test with 100 iterations.

Brain Mapping of Edges and Nodes

As an additional step, binary matrices were constructed 
such that only those edges that correlated significantly 
with the cognitive scores in at least 90% of the cross-
validation iterations (validated predictive edges) and had 

been included in the models with significant predictive 
power (P < .05) were labeled. For descriptive purposes, 
critically involved nodes of each network were identified 
from their degree, that is, the number of adjacent valid-
ated edges. The nonzero-degree-nodes’ degree distribu-
tion was used for setting thresholds for critically involved 
nodes (degree ≥ mean + 1× standard deviation) and highly 
critical nodes (degree ≥ mean + 2× standard deviation). 
In addition, all validated edges were classified according 
to their belonging to within- or between network connec-
tions. The nodes and their degrees were then visualized in 
their anatomic location using the Connectivity Viewer of 
the BioImage Suite Web 1.2.0 (https://bioimagesuiteweb.
github.io/webapp/connviewer.html?species=human).

Results

Cognitive Performance

The detailed cognitive test scores in glioma patients and 
healthy individuals are shown in Supplementary Table 3. 
Glioma patients performed significantly lower than healthy 
individuals in all tests except for the Number Transcoding 
test. The highest deviation from the control group was ob-
served in trail-making tests (TMT-A, time needed: +53.1%; 
TMT-B, time needed: +72.4%), followed by the semantic 
word fluency test (Imagined Shopping Tour, number of 
items: −24.6%). The lowest deviation was observed in 
a test on verbal working memory (Digit Span Forward, 
items: −7.5%). Depending on the test applied, 10%–47% of 
the patients were prone to a clinically relevant deficit.

Connectome-based Predictive Modeling

As shown in Figure 2, the edge values (fiber counts) were 
clustered within the ipsilateral nodes of the different net-
works such that intra-hemispheric connectivity was more 
pronounced than inter-hemispheric connectivity. The 
number of connecting fibers of each node to any ipsi- or 
contralateral nodes spanned a wide range but was nearly 
equally distributed in the right (median fiber number, 48; 
range, 0–4462 fibers) compared to the left (median fiber 
number, 43; range, 0–4604 fibers) hemisphere. In lesions 
of both sides, the median nodal fiber count for intra-
hemispheric connections was lower in the affected than in 
the contralateral hemisphere: median fiber number in left-
sided lesions, 41 (range, 0–4035 fibers) versus 52 (range, 
0–4849 fibers); median fiber number in right-sided lesions, 
40 (range, 0–4013 fibers) versus 47 (range, 0–5265 fibers), 
representing an average fiber loss of 15%–20% per node in 
the affected hemisphere.

In the first step of the CPM analysis, 2770 node-to-node 
fiber counts with a significant correlation to any of the 10 
cognitive test scores (predictive edges) were identified. In 
the vast majority (2704/2770 = 98%) of node-to-node fiber 
counts, the sign of the correlation indicated a positive as-
sociation between fiber counts and cognitive scores (neg-
ative sign for the TMT-A and  TMT-B, positive sign for all 
other tests, see  Supplementary Table 4). A median number 
of 254 of the positively associated predictive edges per 
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cognitive test (range, 32–542) was selected for linear re-
gression modeling between the connectivity values and 
the corresponding cognitive performance scores of all 
121 patients. All linear relationships were significant (P < 
.001), and most of them had a coefficient of determination 
(R2) in the range between 0.35 and 0.45, examples shown 
in Supplementary Figure 1. Conversely, models built from 
the negatively associated edges had R2-values in the range 
of 0.02 to 0.16 (Supplementary Table 4). The analysis of the 
demographic, clinical, or tumor-related variables showed 
significant (P < .01) relations with cognitive scores for age 
(9 of 10 scores), education (8 of 10 scores), tumor location 
(3 of 10 scores), lesion volumes (1–5 of 10 scores depending 
on lesion type) and tumor recurrence (1 of 10 scores), but 
no significant associations for sex, tumor grade, IDH-
status, interval, surgical procedures, radiotherapy series, 
or chemotherapy courses (Supplementary Table 5).

The predictive abilities of different models including the 
above-mentioned variates alone or in combination with 
the positively associated summary connectivity values are 
shown in Figure 3 and Supplementary Table 6. The pure con-
nectivity models had a significantly higher mean coefficient 
of determination (0.330 ± 0.083) than the combined models 
from either age and education (0.141 ± 0.037) or recurrence 
and lesion volumes and tumor location (0.208 ± 0.071; both 
P < .001, t-test). The coefficient of determination of the latter 
models increased significantly by including the connec-
tivity values (mean increase by 0.190 and 0.225, respec-
tively; both P < .001), and all connectivity values proved 
their independent relation with the cognitive scores (all 
P < .001) in the combined multiple regression models.

Therefore, the edges with a positive association to 
cognitive scores were exclusively used for the final, 
cross-validated model. The results for the correlation and 
permutation analyses between the predicted scores from 
the leave-one-out cross-validation and the actual scores 
are shown in Table 1 and Figure 4. The models predicted 
7 out of 10 scores (median correlation coefficient, 0.47; 
range, 0.39–0.57) from 64 to 530 of 9900 (0.6%–5.4%) of the 
possible edges, underpinning the predictive value and po-
tential generalizability of the developed model; illustrative 
examples are shown in Figure 4. However, the final model 
did not accurately predict the scores for the digit span tests 
evaluating the verbal working memory.

Brain Mapping of Validated Edges and Critical 
Nodes

The binary matrices of the cross-validated edges for 
some cognitive tests are shown in Figure 5A–C and 
Supplementary Figure 2 together with an anatomical 
representation of the validated edges and their adjacent 
nodes. The validated edges followed a pattern of mainly 
left intra-hemispheric as well as inter-hemispherical con-
nections. Of note, the majority (overall 1660/1982 = 84%; 
Table 1) of the validated edges were between nodes of 
different networks (inter-network connections, median 
208, range 38–386) rather than between nodes of the 
same network (median 19, range 5–41). This observation 
is also evident from the binary matrices (Figure 5A–C, 
Supplementary Figure 2) where all potential intra-network 
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connections are displayed in gray. The few negatively as-
sociated edges (identified in Step 1) were sparsely distrib-
uted with a tendency to be situated between nodes of the 
right hemisphere (Supplementary Figure 3).

A detailed heatmap of the network nodes and their de-
grees of adjacent validated edges concerning the raised 
cognitive scores are shown in Figure 5D. The nodes adja-
cent to a nonzero number of validated edges had a degree 
of 5.4 ± 5.2; therefore, nodes with a degree ≥10 validated 
edges were regarded as critical for descriptive purposes 

here. The distribution of these critically involved nodes 
varied considerably between domains. Critical nodes for 
attention/processing speed (TMT-A) and executive func-
tion/concept shifting (TMT-B) were mainly located in the 
left visual and somatomotor networks but also included 
nodes from the bilateral dorsal attention and default mode 
networks. For performance in visual working memory 
(Corsi Block Tapping), mainly nodes of the right dorsal at-
tention and bilateral default mode networks proved critical 
and were predominantly connected by inter-hemispherical 

Table 1.  Results of Model Cross-validation (CV)

Model cross-validation (CV)* Identification of validated edges†

Test
(cognitive domains)

Average
edge number 
included (%)‡

RMSE Correla-
tion coef-
ficient (r)

P-value 
permu-
tation

Validated 
intra-network 
edges

Validated 
inter-network 
edges

Total valid-
ated edges 
(%)‡

Trail-making Test A (s) 514 (5.2%) 31.61 0.388*** 0.01* 82 344 426 (4.3%)

(Attention, processing 
speed)

Trail-making Test B (s) 530 (5.4%) 71.66 0.470*** 0.01* 74 386 460 (4.6%)

(Executive function, 
concept shifting)

Imagined shopping tour 
[items]

205 (2.1%) 6.82 0.481*** 0.01* 26 148 174 (1.8%)

(Language, semantic 
word fluency)

Number transcoding 
[items]

64 (0.6%) 0.99 0.411*** 0.01* 10 38 48 (0.5%)

(Language processing)

Digit span Fw [weighted 
items]

30 (0.3%) 2.43 0.123 0.13 CV not 
passed

CV not 
passed

CV not 
passed

(Verbal working 
memory)

Digit span Bw [weighted 
items]

56 (0.6%) 2.58 0.132 0.16 CV not 
passed

CV not 
passed

CV not 
passed

(Verbal working 
memory)

Corsi block tapping Fw 
[weighted items]

224 (2.3%) 2.32 0.202* 0.11 CV not 
passed

CV not 
passed

CV not 
passed

(Visuospatial working 
memory)

Corsi block tapping Bw 
[weighted items]

319 (3.2%) 1.99 0.433*** 0.01* 56 208 264 (2.7%)

(Visuospatial working 
memory)

Word list, immediate 
recall [items]

440 (4.4%) 3.08 0.570*** 0.01* 38 336 374 (3.8%)

(Verbal episodic 
memory)

Word list, delayed recall 
[items]

272 (2.7%) 2.38 0.525*** 0.01* 36 200 236 (2.4%)

(Verbal episodic 
memory)

Notes: Fw = Forward; Bw = Backward; RSME = Root (of) Mean Squared Error.
*Models based on edges positively associated with cognitive performance.
†Edges significant in 90% of cross-validation iterations.
‡No edges from the nodes to themselves, n = ([100 × 100]–100) = 9900 possible edges.
*P < .05. ***P < .001.
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fibers. Nodes and connections critically involved in verbal 
semantic memory (Word List, immediate and delayed re-
call) were almost exclusively left-sided and included nodes 
from the visual, somatomotor, and default mode networks 
(Figure 5A–C; Supplementary Figure 2). Interestingly, 
highly critical nodes (degree ≥15 adjacent validated edges) 
included the default mode network nodes in the left tem-
poral/parietal or bilateral posterior cingulate cortex in 4 to 
5 of the 7 predictive models.

Discussion

As demonstrated in recent randomized trials and the 
present study, glioma patients are at high risk of devel-
oping cognitive decline during their course of disease.3 
Although the relationship between brain damage and 
neurological function is generally well established for the 
eloquent primary cortical areas and their associated fiber 
tracts,35 the underlying causes of cognitive deterioration 
in brain tumor patients remain poorly understood.36–38 
Nevertheless, initial studies in glioma patients suggested 
that evaluating brain networks may help further elucidate 
the cognitive decline of various domains.13–15,39,40 In the 
present study, we hypothesized that decreased structural 
connectivity in whole-brain networks is associated with 
cognitive deterioration in glioma patients. Therefore, we 
applied an innovative tractography algorithm4,23 in combi-
nation with a network-based parcellation that allowed the 
construction of a whole-brain connectome of the structur-
ally altered brain of pretreated glioma patients in conjunc-
tion with a well-developed method for predicting traits and 
symptoms from connectivity data.25 Thus, we could show 
that reduced fiber numbers in subsets of connections 
mainly connecting different brain networks were signifi-
cantly related to performance deficits in different cognitive 

domains. Critical cortical regions (nodes) having cross-
validated connections to a high number of other nodes in-
cluded mainly left-hemispheric cortical regions nodes and 
several cortical regions known as hubs, such as the bilat-
eral precuneus or posterior cingulate cortex.41

As expected, lesion location concerning the major cere-
bral lobes was significantly associated with reduced scores 
in a subset of cognitive tests. Of note, this only gives a 
rough orientation and does not allow for a fine-grained 
characterization of the cortical regions and fiber tracts in-
volved in the performance of specific cognitive domains. 
In principle, the relation between lesion location and 
symptom severity could have been brought down to the 
voxel level, resulting in the widely used method of voxel-
based lesion-symptom mapping which has also been ap-
plied in brain tumors.42 However, despite the high spatial 
resolution, this method has the disadvantage that it arbi-
trarily maps gray and white matter and can only be ap-
plied in brain locations with a representative number of 
lesions. This may result in diverging results depending on 
the pathology under investigation, for example, for tumors 
versus stroke.43

Whole-brain Connectome: The Importance of 
Networks and Hubs

Although the integrity of single fiber tracts appears to 
have a measurable impact on different aspects of cogni-
tive functioning, most higher brain functions are probably 
supported by more general organizational principles gov-
erning the information flow in the brain. Regarding struc-
tural connectivity, several highly connected cortical regions 
have been identified and termed the “rich club.”41 Most 
of these are also present in functional resting-state net-
works (RSN)44,45 and are predominantly located in the pos-
terior part of the default mode network.45,46 Functionally, 
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they seem to serve primarily for connectivity between the 
RSNs, especially between the default mode, attention, and 
control networks.45

These findings and the availability of advanced MR im-
aging techniques in the clinic have led to more network-
oriented approaches for investigating the dependence 
of cognitive performance on structural connectivity in 
perioperative glioma patients. In patients with low-grade 
gliomas, Cocherau et al.17 studied a more extensive set of 
tracts using tract-wise lesion-symptom mapping and found 
the integrity of the left superior longitudinal fascicle and left 
frontal aslant/frontostriatal tracts to be most predictive for 
the development of postoperative disturbances in executive 
functioning and phonologic fluency. Liu et al.18 constructed 
a whole-brain structural connectome from deterministic 
tractography in preoperative glioma patients. They ob-
served that local (node) efficiency, a measure for commu-
nication strength among the first neighbors of a node, was 
generally reduced in tumor patients and particularly related 
to memory function in temporal tumors and to informa-
tion processing speed in frontal tumors. Zhang et al.16 ap-
plied navigated transcranial magnetic stimulation (nTMS) 
and whole-brain deterministic tractography in left-sided 
tumors and observed a correlation between the average 
node degree (and other connectome properties) of the 
left-hemispheric/nTMS-positive networks and the degree 
of aphasia. A network-level approach was also adopted by 
Mrah et al.,19 who computed lesion overlap and white matter 
dysconnectivity scores for several atlas-based functional 
networks in low-grade glioma. Through a machine-learning 
algorithm, lesions or disconnections of the frontoparietal 
(control) network proved to be most predictive for postoper-
ative deterioration in cognitive set-shifting.

In the present study, we used a network and node defini-
tion scheme encompassing the entire cerebral cortex and 
considered all potential structural connections between 
cortical nodes, including those lying outside anatomically 
designated tracts. Despite significant variation between 
cognitive domains, most predictive connections were 
those between different RSNs rather than within single 
RSNs. The distribution of critically involved nodes also 
varied considerably between domains but included nodes 
of the left visual and somatomotor networks and bilateral 
nodes of the dorsal attentional and default mode networks 
in several domains. Particularly critical nodes included the 
default mode network’s left temporal and bilateral poste-
rior cingulate cortex. These findings fit well with the view 
that structural connections between RSNs form the back-
bone of functional connectivity, enabling higher cogni-
tive processes. From a more general point of view, these 
results may imply that cognitive decline in treated brain 
tumor patients shares a common mechanism with other 

major psychiatric and neurological disorders where the 
rich club nodes were also found to be predominantly in-
volved,47 such as the precuneus/posterior cingulate cortex 
in Alzheimer’s disease.48

As cognitive performance depends on several nodes of 
different networks, the present models could be used to 
predict cognitive decline in individual glioma patients es-
pecially when local treatments such as surgery and radio-
therapy are planned. In these situations, post-therapeutic 
cognitive deficits could arise unforeseen by clinical judg-
ment or standard neuro-navigation, but may be anticipated 
or avoided by pre-therapeutic whole-brain tractography 
and critical node definitions as provided here.

Limitations

This study included patients with substantial variability in 
treatment intensity and time between treatment initiation 
and imaging/neurocognitive assessment. In addition, each 
patient was observed only once, such that longitudinal ob-
servations were not available. On the other hand, while 
group analyses are usually challenging to perform in this 
constellation, a rich, diverse pattern of structural damage 
may have facilitated the construction of a predictive model 
for cognition performance. From a methodological point 
of view, applying an atlas-based parcellation created from 
healthy subjects may be questionable because a functional 
restructuring of the brain, including shifts and deformations 
of cortical nodes, may have occurred in the patients. Finally, 
fiber tractography always approximates the actual white 
matter structure because even the most advanced methods 
may fail, especially in structurally altered brain tissue.

Conclusion

In summary, the present results suggest that the cogni-
tive performance of pretreated glioma patients is strongly 
related to the structural connectivity between multiple 
brain networks and the integrity of known network hubs. 
This mirrors a pattern observed for other major neurolog-
ical disorders. Whole-brain tractography in conjunction 
with the definition of critical cortical nodes should be fur-
ther evaluated for improving local treatment planning in 
glioma patients.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).

immediate recall (verbal semantic memory). (D) Heatmap of the networks and nodes and their degrees of adjacent cross-validated predictive 
edges concerning the raised cognitive scores. Bw, Backward; L, left; R, right; Vis, visual; SM, somatomotor; dAtt, dorsal attention; vAtt, ventral 
attention; Limb, limbic; Ctrl, frontal control; DMN, default mode network; Temp, temporal; TMT-A (A), Trail-Making Test A (attention); TMT-B (E), 
Trail-Making Test B (executive function); SupM (L), Imagined Shopping Tour (language); DSf (VM), Digit Span Forward (verbal working memory); 
DSb (VM), Digit Span Backward (verbal working memory); CBTf (vM), Corsi Block Tapping Forward (visuospatial working memory); CBTb (vM), 
Corsi Block Tapping Backward (visuospatial working memory); WLi (eM), Word List, immediate recall (verbal episodic memory); WLd (eM), Word 
List, delayed recall (verbal episodic memory); PCC, posterior cingulate cortex.
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