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Adapting crop production to climate change and air pollution at different scales
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Editor’s summary

Elevated CO2, global warming, ozone pollution, and drought are major climate-related
environmental challenges affecting field crop production. This paper discusses strategies and
perspectives for crop production under climate change and air pollution at plant, field, and
ecosystems scales.
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Abstract: Air pollution and climate change are tightly inter-connected and jointly affect field
crop production and agroecosystems health. Although the individual and combined impacts of
air pollution and climate change factors are increasingly understood, adaptation of crop
production to concurrent air pollution and climate change remains challenging. Here, we review
the recent advances on the adaptation of crop production to climate change and air pollution at
plant, field, and ecosystems scales. Main approaches at plant level include integration of genetic
variation, molecular breeding, and phenotyping. Field level techniques include optimizing
cultivation practices, promoting mixed cropping and diversification, applying technologies such
as antiozonants, nanotechnology and -robot-assisted farming. Plant and field level techniques
would be further facilitated by enhancing soil resilience, incorporating precision agriculture, and
modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level.
Strategies and perspectives for crop production under climate change and air pollution are
discussed.
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Challenges of crop production under air pollution and climate changes

Since the introduction of semi-dwarf and disease resistant crop varieties during the green
revolution [1], the yield potential of new cultivars in large regions has stagnated due to
counteracting effects of climate change [2]. Such effects will likely continue impacting our
cropping systems [3] and anthropogenic greenhouse gas emissions continue to rise [4]. Therefore,
it is essential that methods of crop production are constantly revised and adapted according to the
latest policies and contemporary environmental challenges.

Tackling climate change and air pollution is considered as one of the most urgent global
tasks and affects sustainable development goals [5]. Elevated CO2, global warming, ozone
pollution, and drought are major climate-related environmental challenges [6]. Water deficit
stresses cause stomata closure, reducing the ozone uptake and its damaging effect on
photosynthesis in some cases [7,8]. Elevated CO2 lowers the concentrations of several nutrients
and vitamins, and threatens human dietary needs, such as B vitamins that are reduced by 17-30%
in rice [9,10]. However, elevated CO: increases photosynthesis and crop growth, and can offset
the negative impacts of heat stress [11]. Increasing CO2 might also alleviate ozone impact due to
smaller ozone uptake [12]. The positive effect of CO2 on crop yields might be reduced depending
on local microclimate conditions. Higher CO2 concentrations in the surrounding air lead to
enhanced intracellular COz saturation, decreasing transpiration, and increasing internal water use
efficiency [13]. At the regional and global scale, crop production is affected by these climate
factors and their interactions with anthropogenic activities. For instance, the complex distribution
of different cropping systems and landscape components, as well as their interactions between
land and atmosphere strongly affect the climatic condition, i.e. drought [14], warming [15], and
ozone concentration [16]. Moreover, the interactions between multiple stressors are highly
complex and can lead to dynamic and non-linear impacts, including antagonism, additivity, and
synergism [8]. Thus, adaptation strategies under climate change must incorporate positive or
negative antagonistic, additive, or synergistic effects of the multiple environmental factors on
crop physiological characteristics and crop production. Interactive effects of these stressors on
crops might differ across spatial scales. Thus, understanding these interactions (additive,
multiplicative, or compensating at different levels) is needed to provide suitable adaptive
strategies. However, recommending adaptation options in responses to stressors remains
challenging because those abiotic stress factors naturally occur together.

Here, we discuss potential solutions to adapt the crop production to climate change and
air pollution at plant, field, and ecosystems scales (Fig. 1). We focus on adaptation to ozone, CO2,
and warming; however, other contemporary stressors are also considered in the discussion where
adaptation strategies may offer additional benefits against such stressors.

Adaptation options at plant scale

Breeding approaches
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Intraspecific genetic variation in resistance to climate change exists in different crops, which
provides the basis for crop breeding [17,18]. Molecular breeding approaches such as marker-
assisted selection (MAS) constitute a major leap compared to traditional and time-consuming
breeding approaches such as pedigree selection [17,19]. Germplasm collections, such as the fully
sequenced plant material available from the 3000 Rice Genomes Project [20] form a powerful
resource, as they can be used for phenotypic sceening of populations representing the entire
genetic diversity of crop species in specific stress environments. Subsequently, the genetic
architecture underlying favorable adaptive traits can be readily dissected with the aid of the
available genomic sequence information using approaches such as genome-wide association
study (GWANS). As a prerequisite, free access to the gene banks curating germplasm collections,
as well as sustainable funding and benefit sharing schemes for gene banks need to be ascertained
by agreements such as the International Treaty on Plant Genetic Resources for Food and
Agriculture (https://www.fao.org/plant-treaty/en/). Researchers can then acquire the material to
identify adaptive loci for specific environmental stress conditions that will then be introgressed
into elite varieties using MAS. Regarding heat stress, ozone stress, and elevated COo,
quantitative trait loci (QTL) and candidate genes were identified in major crops, which form a
prerequisite for MAS breeding [17,18,21]. However, large-scale marker-assisted breeding
programs for resistance to ozone and effective utilization of elevated CO: are missing.
Conversely, heat-tolerance rice breeding is ongoing at the International Rice Research Institute
(IRRI) [22], which is expected to add new discoveries in the near future.

Dissecting and integrating genetic variations for adaptation

Recent research programs now offer new insights for ozone. QTL related to ozone resistance
were identified in rice [23], maize [24], and wheat [25]. Transcriptomic responses of crops such
as common bean, garden pea and soybean to ozone were explored [26,27]. These studies
demonstrate that ozone tolerance in crops is a quantitative trait. A classical pedigree selection
approach in different field locations might not lead to ozone tolerance due to the unpredictability
and heterogeneity of ozone occurrence, and therefore marker-assisted breeding might be the
most promising approach to introgress known ozone tolerant loci into established crop varieties.

Carbon source-sink relationships play a significant role in determining the plant ability to
utilize elevated CO: that increases photosynthesis [28]. QTLs for source- and sink-related traits,
including flag leaf traits, yield traits, and photosynthetic pigments under ambient and elevated
CO2 were identified in rice [29-31]. In legumes, physiological traits related to elevated CO2 were
dissected [32]. These known loci can be utilized in breeding programs toward efficient CO2
utilization. In addition, classical breeding approaches such as pedigree selection take place under
gradually rising CO2 concentration and might thereby unintentionally lead to adaptation and high
yields under elevated COz levels.

Improved crop yields due to COz ‘fertilization” may be limited by CO2-induced reductions in
the maximum carboxylation rate and the maximum rates of electron transport [33]. Therefore,
improving biochemical limitations to photosynthesis offers an opportunity to enhance crop
productivity. Rubisco activity is also linked to chloroplast CO2 concentration [34]. Improving
mesophyll conductance can enhance CO: diffusion from sub-stomatal cavities to chloroplasts, as
a target of increasing chloroplast CO2 concentration and Rubisco activity [35]. Improving the
speed of stomatal opening would be beneficial to enhance crop yields under elevated COa.
Concurrently, variation in ozone sensitivity among plants is related to stomatal conductance [36],
and reduction in stomatal conductance and ozone stomatal flux may serve as targets for climate
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change adaptation. However, stomata optimize CO2 uptake while minimizing water loss [37].
Hence, breeding for ozone-tolerant cultivars with lower stomatal conductance may result in
suppressed photosynthesis and yield. The trade-off between photosynthesis and stomatal
conductance to improve leaf water use efficiency is linked to plant ozone tolerance. Accelerating
the response of stomata to light is an efficient approach to improve water use efficiency, which is
used to breed drought tolerant cultivars [38,39]. Optimized stomatal behavior to control the
trade-off between photosynthesis and ozone flux is also an avoidance of elevated ozone [40].
Ozone tolerance is often related to the concentration of ascorbic acid in the apoplast and leaf
tissue in crops such as wheat, soybean, and maize [27,41,42]. Therefore, regulating antioxidant
levels could improve ozone tolerance [43]. Increases in leaf cell wall thickness, apoplastic pH,
and leaf tissue ascorbic acid concentration also result in greater ozone detoxification by
apoplastic ascorbate [44], which may provide an efficient approach to breed ozone-tolerant
cultivars. However, manipulation of the leaf apoplast toward a more reduced redox state could
have the unintended consequence of altering the plant ability to sense and respond to pathogen
infection [45,46]. Hence, a more holistic approach is needed based on biological interactions.
Moreover, adaptation options should allocate equal focus between yields and nutritional quality,
especially considering the current threat of malnutrition in undeveloped and developing countries.

Crop heat stress tolerance is also complex, and threshold temperatures are species-specific
[47]. Multiple loci for heat tolerance were identified in rice at the seedling stage [48,49] and
reproductive stage [50-54]. In addition, 35 heat stress-responsive meta-QTLs and 45 candidate
genes were identified in rice, facilitating marker-assisted heat-tolerant rice breeding [55]. Heat-
responsive loci were also identified in wheat [56-58], maize [59—-61], soybean [62], and lentil
[63]. These advances facilitate the formulation of targets in developing long-term plans for
mitigating current and future global warming impacts [64], especially for tackling the challenge
of superior plants under multiple combined stresses.

Breeding crops for a future climate needs to address favorable and unfavorable interactions
of CO:2 with increasing ozone and temperature [32]. However, it is challening to maintain a
breeding environment in which all of these environmental factors are stably maintained for a
classical selection approach. A solution to this problem could be physiological breeding [65], in
which physiological traits that confer advantages in these environmental conditions are
introgressed into target varieties. The International Maize and Wheat Improvement Center
(CIMMYT) reported the consideration of physiological traits, such as canopy temperature or the
normalized difference vegetation index (NDVI), in breeding programs leads to wheat varieties
with enhanced performance in heat and drought environments [65]. Such data are also commonly
collected at field scale (see also section ‘phenotyping-robot-assisted farming’), further indicating
the nexus between plant and field levels. In addition, as stress tolerance is a quantitative trait,
many loci should be combined in a process called QTL pyramiding in order to adapt crop
varieties to multiple stress conditions [66]. Although this is still an elaborate process, the
availability of genome sequences for all major crops has greatly facilitated the fast identification
of genetic markers for such MAS schemes [66,67]. One possible challenge that needs to be
overcome in QTL pyramiding is ‘linkage drag’ of agronomically unfavorable traits that could be
closely associated with favorable adaptive traits. Another challenge could be confounding or
even conflicting physiological effects of QTL, for example in the case of stomatal regulation.
Precise crop engineering based on mechanistic understanding of adaptive traits may help to
overcome these challenges [68].
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Adaptation options at field scale
Cultivation techniquesfor air pollutantsand climate changes

There has been limited advance regarding how cultivation techniques may mediate air
pollution impacts. Because elevated ozone accelerates leaf senescence and suppresses the
photosynthetic rate of flag leaves during later developmental stages [69], early sowing of winter
wheat helps to effectively reduce the ozone stomatal flux. On the other hand, the occurrence of
ozone peak levels depends on the weather conditions, and sowing timing should be adjusted
according to local conditions. Crop management practices such as changing irrigation facilitate
improved crop tolerance to ozone. However, such a practice should also account for CO2
emissions, e.g. decreased water supply may decrease CO2 emission [70]. Adjustment of water
supply would reduce water use and increase water use efficiency, thereby reducing ozone uptake
flux. Preliminary findings suggest straw addition may offer benefits to crops under ozone stress
[71]. Straw and other organic amendments to soil can also decrease soil CO: emissions,
potentially offering double benefits [72,73]. Potential benefits in crop production of using crop
management practices should be assessed using modeling frameworks and field experiments
with multiple factors [74].

Ozone alters soil microbial communities and root activity [75,76], thereby impacting crop N
uptake and grain protein accumulation [77]. There are no consistent results on the combined
effects of ozone and N on crops [78,79]. N fertilizer aggravates, slows down or does not alter the
effects of ozone on crops [78,80]. Ozone can also increase the optimum N application rates,
decrease crop N use efficiency, and increase the risk of N-related environmental problems, such
as soil N leaching, aquatic eutrophication, and greenhouse gas N2O emissions [80]. Therefore,
the time, frequency, dose and type of fertilization need to be further optimized to improve the N
uptake capacity and antioxidant capacity of crops to cope with ozone stress. Fertilization regimes
should also consider the influence of COz effects. For example, the negative effects of low soil N
on grain quality may be exacerbated by elevated CO:z [81]. Concurrently, some agronomic
measures are applied to increase the N utilization efficiency and reduce environmental pollution,
such as combined application of organic and inorganic fertilizers [82]. Further research is needed
to investigate whether these agronomic measures are effective in mitigating ozone damage to
crops, especially with concurrent elevated CO2 and warming [83].

Optimization of agricultural land management may act against global warming. For example,
under the Representative Concentration Pathway 2.6, current agricultural mitigation practices to
increase soil organic carbon sequestration may decrease global temperature by up to 0.26 °C,
potentially favoring also soil water holding capacity and fertility [84]. Moreover, irrigation can
offset crop production loss due to global warming projected by the 2050s, although >5%
expansion of irrigation areas in warm regions is needed to fully counteract losses [85]. These
suggest that multi-factorial studies are needed to optimize the cultivation techniques for
concurrent adaptation to ozone, COz, and warming at field scale.

Diversification of cropping systemsfor adaptation



241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

Nowadays farming systems often utilize crop rotation (growing different crops on the same
field in successive growing season), intercropping (simultaneously cultivating two or more crops
on the same field), and overall crop diversification (incorporating additional new crops or
cropping systems to existing farmland) [86]. These systems aid in increasing crop diversity,
reducing chemical pollution, repressing pests and diseases, enhancing soil health and nutrient
and use efficiency, promoting benefits of soil microorganisms, and increasing yields [86].
Agroforestry also promotes diversification, mitigates climate change impacts, and facilitates
ecosystem services and economic development [87-89]. Such diversifying practices have a great
potential to enhance agricultural sustainability and promote resource savings. For instance,
modifications in crop rotations and distributions (switching) can contribute 23-40% toward the
targets of agricultural sustainable development in China by 2030 and facilitate global resource
savings [90]. Among other benefitis, fertilizers (-532 to -10.9%), pesticides (-4.3 to -10.8%) and
greenghouse gases (-1.7 to -7.7%) can be decreased while farmers incomes are increased (+2.9 to
+7.5%) [90]. Similar to crops, a recent analysis of Canada’s National Forest Inventory (NFI) data
revealed that enhancing functional diversity of trees increases decadal soil carbon (32%) and
nitrogen (50%) in the mineral horizon [91]. Hence, such structural changes in the
agroecosystems, including agroforestry, are widely addressed in the agroecological literature and
have the potential to serve as a key to adaptation [92-95]. However, the role of diversifying crop
systems under air pollution with or without combined climate changes has received little interest
and remains elusive.

Diversifying crop cultures from monocultures to multi-species cultures increases annual
primary productivity, plant biomass, and seed yield, but can decrease harvest index, a side effect
that may be attributed to the breeding of current cultivars for best performance in monocultures
[96]. However, from a climate change adaptation perspective, having a lower harvest index is not
necessarily negative, if yields are also higher, given that the additional biomass production is
incorporated into the soil to increase carbon sequestration, obtaining adaptation benefits from
higher soil organic matter (SOM). Hence, greater seed yield gains may be compromised by
diversification of cropping systems with crop cultivars bred for monocultures [96], suggesting
that breeding programs should be optimized for mixed cropping systems to improve crop yields
under future climate change and air pollution. Richness loss of services-providing organisms
such as pest predator and pollinator contributes up to 50% of the impacts of landscape
simplification on ecosystem services, negatively affecting crop yields [97]. Hence, to sustain
crop productivity and agroecosystem health, the diversity of services-providing organisms
should also be sustained [98]. The enhancement of crop productivity by increased crop diversity
are partly driven by changes in the composition of soil microbial communities, especially
increased abundance of plant-growth promoting microorganisms such as Actinobacteria [99].
However, the effects of crop diversity on communities of soil microorganisms depend on soil
conditions, such as fertilization and moisture [99]. However, the continuum soil microbes-crop
diversity-crop productivity is not well understood [99], calling for more research to optimize the
outcomes. Diversification of cropping systems can also decrease the inputs of agrochemicals in
the agroecosystems, thus offering a sustainable intervention for environmental health [100].
Hence, conservation of on-farm crop diversification is a promising approach to enhance crop
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production across the world, including developing countries [98,101,102] in future climate
change and air pollution scenarios.

A system with crop diversification can enhance water infiltration, water storage, and reduce
water runoff [103], increasing cooling capacity of the canopy against heat events [104,105]. An
intercropping system of potato with legumes facilitates reducing soil temperature and increasing
crop water productivity and radiation use efficiency as compared to solo potato [106]. Cooling
effects may minimize the negative effects of heat stress while stomata are still open, but this
might harm crops due to an increased ozone uptake [7,107]. There is an increasing understanding
of solo and interactive effects of elevated COz, ozone, and high temperature based on both
modeling work [108—114] and experimental studies [115]. However, the tradeoff effects induced
by mixture of canopy structure and crop diversification (i.e. in mixed cropping system) on
various climate factors, particularly with ozone, and their interactions need future studies.

Emer ging technologies and management

Ethylenediurea (EDU) is a synthetic chemical and antiozonant protecting numerous crops
[46,116—-119]. Potential application of antiozonants within agroecosystems in the future would
require the selection of the application method [120], but more toxicological and
ecotoxicological studies covering the entire spectrum of low and high dose effects (hormesis) are
needed before it can be applied into the agroecosystems. Moreover, cost-benefit analyses are
needed to optimize the application interval and concentration and amount relative to the desired
yield benefits. A more efficient use of antiozonants would require the concurrent protection
against air pollutants and climate changes. For example, pretreatment of rice (Oryza sativa L.)
plants with calcium acetate led to higher rice yield under combined O3 and heat stresses [121].
Similarly, preliminary results show that EDU can improve plant functionality under water deficit
stress in Osz-polluted ambient air (Fraxinus ornus; [122]), adverse ambient O3 stress combined
with particulate matter deposition (Triticum aestivum; [123]), and O3 phytotoxicity under
elevated CO2 (Oryza sativa; [124]), hinting to the possibility of antiozonant application under
multiple environmental stresses. Recent studies provide evidence for nanomaterials-induced
protection against Oz [125,126], with mechanisms resembling those protecting against other
oxidative stresses [118], suggesting that nanomaterials can provide protection against various air
pollutants and climate changes that induce oxidative stress in plants. Therefore, future chemical
engineering developments have the potential to facilitate the incorporation of greener
technologies with a lower potential accumulation of residues in the environment [118].

Biostimulants represent an extremely broad category of biological products that enhance
plant productivity by affecting plants directly and indirectly [127,128]. Biostimulants often
enhance the quality of harvestable products and their nutritional value [129]. With the
tremendous increase in the use of biostimulants in the agricultural sector in the recent years
[130], their simultaneous protection against air pollution and climate change is promising.
Considerable literature indicates their efficiency in mitigating abiotic stresses and their potential
as a low-input tool of cropping management for more sustainable farming [131,132]. These
deductions are substantiated by recent studies showing different biostimulants protecting crops
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against O3 damage [133—135], which adds to the widespread evidence for protection against
climate changes.

Melatonin is also a highly pleiotropic molecule produced by animals and plants, which
affects numerous diverse functions and processes in plants, including the circadian rhythms and
its crucial role in day/night cycles, growth, photosynthesis, and rhizogenesis [136,137].
Melatonin improves plants and edible plant products by ca.7-30% against various elements of
climate change and pollution [136,137]. The efficient protection of melatonin against different
types of stresses suggests its suitability as a plant protectant that can facilitate its incorporation
into the agricultural practice. While melatonin is proposed as a biostimulant for crops and post-
harvest products, multidisciplinary studies are needed to explore the links of the impact of its use
among agricultural, food technology, human nutrition, and environmental health [138].

Priming accelerates and boosts the defense response during subsequent exposures and
leads to induced resistance and/or tolerance to both biotic and abiotic stress, including major
climate changes such as heat and drought [139—-141]. Seed priming can decrease the cost
required for treatments on the field and to considerably larger plants, thus being a resource- and
labor-efficient approach that poses also minimal environmental risk [140,142]. Priming gives an
additional benefit as it can be used to regulate the (a)synchronous occurrence of ontogenic stages
that are particularly sensitive to air pollutants to seasonal peaks [143—145]. On-field application
of seed priming leads to increased economic returns and decreased cost-benefit ratio, with the
greatest outcomes obtained when priming is incorporated with other agronomic practices, such
as fertilizer micro-dosing and row spacing [144,145]. The use of nanotechnology, i.e. application
of nano-primers, can facilitate an even more eco-friendly and sustainable priming [143], to
protect against a broad spectrum of environmental stresses associated with air pollution and
climate change.

Phenotyping robots can conduct measurements of plant traits at a high throughput and precision
rate and thus have a great potential to support data acquisition for a better understanding of plant
reactions in a changing environment. Assessment by phenotyping robots can accelerate the
breeding process and allows for a closer study of the effects of environmental factors on complex
plant traits [146]. The combination of phenotyping robots with precision farming has a
significant potential for more target-oriented inputs and reduced impact on ecosystems, such as
by decreasing greenhouse gas emissions by site-specific application of fertilizers or plant
protection measures [147]. Moreover, phenotyping can speed up the breeding process and reveal
new genotypic differences [148,149]. Therefore, phenotyping robot-assisted farming can aid
efforts to adapt to ozone, CO2, and warming by offering fast and real-time large data, providing a
framework for the integration of a more holistic view to mitigate climate change and develop
climate-resilient cultivars.

Adaptation options at ecosystem scale
Enhancing soil resilience
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Climate change factors, such as elevated CO2, ozone and warming, negatively influence SOM
content and soil biota activity, which may consequently affect soil fertility, crop productivity,
and the environment. For example, although elevated CO: increases the net primary productivity
[150], a lower SOM storage is expected because of the faster decomposition of SOM under
elevated COz [151]. Warming enhances native SOM loss via altering soil functional microbial
communities [152]. For instance, warming and elevated ozone alone and in combination generate
tradeoffs between arbuscular mycorrhizae and the host roots and stimulate organic carbon
decomposition in nontilled soybean agroecosystems [153]. As a key indicator of soil resilience,
SOM content determines the level of soil fertility to a great extent and thus crop yield
[154,155]. Therefore, the loss of SOM resulting from climate change will likely decrease soil
resilience and productivity. Increasing soil carbon storage is a promising way of enhancing soil
resilience to mitigate the negative effect of climate change on agriculture. Lots of practices have
been used to maintain SOM storage in agriculture, such as applying organic fertilizers,
conservation tillage, straw mulching, and intercropping [156]. Some of these measures, e.g.
incorporating organic ammendments into agricultural soils, have been proved to be efficient in
increasing soil fertility and crop productivity via soil carbon sequestration [157].

To achieve adaptation to climate change and air pollution, soil organic matter should be
increased via a set of management practices such as cover crops, agroforestry, organic inputs,
reduced tillage, varieties, mixed farming [158]. These would directly affect the functioning of
agroecosystem, including autonomy, biodiversity, infiltration, soil protection, water retention,
nutrient availability, and carbon sequestration [158]. Thereby, impacts from climate change and
resource depletion decrease [158]. Altogether, these would lead to increased yield and net
primary productivity [158].

I ncor por ation of remote sensing technologies

Recent developments in remote sensing satellites include the Fluorescence Explorer (FLEX),
which will be able to measure chlorophyll a fluorescence emitted from plants at high spatial- and
temporal resolution from space after its launch in 2024 [159,160]. Passive or sun-induced plant
chlorophyll fluorescence (SIF) measurements are sensitive indicators of photosynthesis. Since
photosynthesis is the process where CO: is transformed into substance, the fluorescence signal
serves as an integrative indicator of ecosystem dynamics and the status of vegetation functioning.
The launch opens new perspectives and adaptation options since the integrated Fluorescence
Imaging Spectrometer (FLORIS) allows for valuable assessments of direct and indirect
ecosystem functions integrating effects of elevated COz, increased air pollution, and global
warming. In order to support the FLEX data and correct, e.g., aerosol influences, Sentinel-3
satellites have been chosen to serve as tandem partners [160]. The auxiliary data provided by
Sentinel-3 will be included to improve models of future atmospheric CO2 concentrations. FLEX
high sensitivity will enable generating instantaneous data which has not been aggregated over a
longer time period and several overflights. By obtaining precise databases of dynamic crop
adaptation, remote sensing can guide precision agriculture for advanced planning, crop yield and
health estimation, and agroecosystems management [161]. Nevertheless, high degree of
dependence on technology may be compromised in conditions of low availability of energy that
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can be expected to increase in a context of resource depletion and increasing conflicts. For
example, the ongoing Russo-Ukrainian War affects the food system more through its effects on
energy prices than through the decreased crop production in the area [162].

M odified hydrology and microclimate of agricultural landscapes

Under drought stress, plants close stomata to reduce water loss, which is limiting the
uptake of ozone by vegetation which consequently increases surface ozone concentrations
[163,164]. Ecosystem-atmosphere interactions reduced ozone removal by water-stressed
vegetation, which exacerbated ozone air pollution over Europe during 1960-2018 (Lin et al.,
2020). Simulation studies showed that irrigation decreases surface ozone by 0—5 ppb in irrigated
areas but increases them by 2—7 ppb over the surrounding non-irrigation areas. Irrigation largely
affects ozone exposure, but local impacts depend on the seasonality of emissions and climate
[111]. Large-scale irrigation has the potential to bring positive effects through flexibility to avoid
ozone peaks by shifting cropping calendars under irrigation. However, under irrigation, crops are
sensitive to ozone damage because stomata fully open, thus increasing ozone uptake [7]. For heat
stress, the effect of irrigation is positive because its cooling effect helps to reduce canopy
temperature and thus restrict the negative effects of heat stress [165,166]. However, a decrease in
canopy temperature may prolong phenological processes in crops, thus affecting crop yields
[167]. Moreover, increased water input through irrigation may result in significant sensitivity of
the ecosystem COz respiration during the vegetation period as well as relatively high releases of
CHa4 and N20 [14,168,169], which are major ozone precursors. These impacts might offset the
positive effects of irrigation on regulating ozone [170]. However, how irrigation or related
management measures affect biological or atmospheric processes, in particular ozone
concentration, remains poorly investigated [171]. Freshwater use is considered a planetary
process whose boundary can soon be trespassed, which presents the main problem related to
irrigation expansion [172]. Moreover, changes in landscape patternsstrongly alternate the
hydrological processes and, thus, water availability for irrigating cropland [173,174] might
indirectly influence the ozone concentration at larger scales.

Moditying the microclimate has also a high potential for improving crop performance in
changing environmental conditions. One measure of modifying the microclimate for field crops
is the integration of woody species in cropping systems (such as agroforestry), or agricultural
landscapes [175]. Trees typically have deeper root systems than annual crops and can increase
air humidity and decrease air temperature [176]. Moreover, via hydraulic lift they can provide
moisture in more shallow soil layers to annual crops [177]. The combination of lower
temperatures and higher air humidity potentially facilitates the adaption to heat stress, enhances
ozone degradation, and improves CO: assimilation. However, exploiting such synergies would
require carefully balanced and locally adapted agroforestry systems that are technically feasible
and economically profitable.

Crop growth modeling

Given the large spatial variation in changes of climatic factors and ozone pollution across
different global crop production regions [178,179], adapting crop production at regional scale
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should be region-specific. Therefore, it is essential to assess the spatial-variation before
developing adaptation strategies [180,181]. Crop growth models, which can simulate dynamics
of crop-soil system as influenced by climate conditions, soil characteristics and crop
management, have been widely used for assessing climate change impacts on crop productivity
[182,183]. Some recent estimations of elevated ozone impact on crop production were mostly
based on statistical regressions, which usually ignore the cultivar or regions differences in the
responses of crop production [184]. Applying the crop growth models at regional scale provides
the opportunity to estimate the integrated impacts of climate change and elevated ozone together
[113]. Another potential application of crop models is evaluating the possible impacts of
different adaptation strategies, focusing on crop management and cultivar shifting.

Crop growth models have been improved substantially to enhance the suitability across
different climate change scenarios and different regions, especially through the efforts within the
Agricultural Model Intercomparison and Improvement Project (AgMIP) [185]. However, most of
the current improvements in crop growth models focused on simulating the impacts of climate
variables (e.g. rising temperatures, extreme climate events, CO2) [186]. Elevated ozone
potentially interacts with climate factors (rising temperature, CO2) on several important growth
processes, especially on leaf photosynthesis leaf senescence and grain C/N dynamics [187,188].
Current crop growth models rarely incorporated these interactions, except some empirical factors
that were recently introduced into the models to modify the leaf photosynthesis on senescence
[189,190]. Modeling the effects of rising ozone and temperature on leaf stomatal, and
subsequently on evapotranspiration and canopy temperature should be the priority, as they have
important implications for quantifying the accumulation of leaf photosynthesis and water use to
elevated COz under future climate. Coupling modeling with field empirical data from different
cultivars and their responses is also needed. Furthermore, modeling should also account for
dynamic responses and non-linear phenomena to produce more reliable impact estimates
[191,192].

Per spectivesfor crop production under climate change and air pollution

The herein analysis suggests that climate change may not necessarily result in lower
yields across all crops and locations. This is partly due to ongoing countermeasures adopted by
local governments as well as because of individual actions by farmers in an effort to increase
crop yields and thus their income, although further efforts are clearly needed to maximize
adaptation and resilience under concurrent climate changes and air pollution [64,90,94,193].
Future local adaptation would require its own specific extent of weather and air pollution
predictors, but finer spatiotemporal resolution of integrated weather, air pollution and yield data
should be achieved, especially to capture risks during the most critical crop growth stages [193].

The present analysis suggests that no single method or approach would suffice to adapt
crop ecosystems to climate change and air pollution. A plethora of methods or approaches should
be integrated considering not only crop productivity but also environmental impact, thus
requiring cost-benefit analyses in terms of both agricultural and environmental sectors. The
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adaptation includes different scales, i.e. plant, field, and ecosystem (Fig. 1). However, a new
generation of research programs is needed to move to more multidimensional researches in
which different sets of methods and approaches at different levels (plant, field, ecosystem) would
be tested as to benefits under combined environmental stressors (Fig. 2). Incorporation of key
traditional strategies of agroecology, such as biodiversification, soil management and water
harvesting, into agroecosystem management would facilitate increasing resilience while
providing economic benefits [194].

Adaptation at food system level may be additionally needed to counteract air pollution
and climate change and their associated possible yield losses, such as by decreasing meat
consumption or food waste [195,196]. This suggests that aspects other than farming would
define the degree of adaptation of agroecosystems such as willingness of the public to adopt
changes in lifestyle. For instance, advanced nitrogen management along with shifts in dietary
customs could enhance planetary feeding capacity [197].The complexity in climate change and
air pollution lies in the fact that environmental, economic and social dimensions are dynamically
linked in both antagonistic and mutually beneficial ways in a system that is highly unpredictable.
The systemic approach and combination of disciplinary knowledge in interdisciplinary research
enables a multi-perspective view for a closer approximation and better understanding of the
phenomena. New approaches are formed in the common exchange process of ideas and
perspectives, enabling innovation. However, with underlying differences in research
methodology, interdisciplinary collaboration can undoubtedly be challenging, and opinions
diverge already at the debate of which knowledge concept is at the forefront [198]. Since the
debate over greenhouse gas emissions and the adaptation to climate change, air pollution and
other biophysical and social stressors does affect a myriad of stakeholders, the interdisciplinary
approach is sometimes found to be insufficient. It has been therefore suggested going beyond an
interdisciplinary approach and applying an open transdisciplinary approach, a combination of
formal basic knowledge from different disciplines with informal knowledge and application-
oriented practical knowledge by linking them in a participatory and adaptive processes [199].
Such inter- and transdisciplinary research is highly needed to adapt crop ecosystems to climate
change and air pollution.
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Figures and captions

Fig. 1. Adaptation of crop production to air pollution and climate change at plant, field,
and ecosystem levels. At plant scale, integrating genetic variation, QTL, molecular breeding,
and phenotyping can offer a perspective for improving crop performance under such
environmental challenges. Then, a number of techniques can be applied on the field, including
adjusting cultivation practices (e.g. fertilization, irrigation), diversifying cultivations and
promoting mixed cropping systems, applying antiozonants (if toxicologically tested) and
biostimulants, utilizing priming technology, and expanding phenotyping-robot-assisted farming.
At the ecosystem level, enhancing soil resilience, incorporating remote sensing technology
(precision agriculture), and modifying the hydrology and microclimate of agricultural landscapes
can further facilitate crop adaptation to climate change and air pollution. Photo sources:
Background photo: ©Mokhamad Edliadi (flickr.com; cifor.org); Puzzle pieces: ©Pixabay.com,;
istockphoto.com.
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1293  Fig. 2. Overcoming current limitations in adapting agroecosystems to climate change and air
1294  pollution at different scales. To overcome current limitations, needs include moving toward more
1295  multi-dimensional experiments, employing a transdisciplinary approach, and addressing

1296  combined effects of climate change and air pollution in models. Needs also include coupling
1297  modeling with empirical data, incorporating pleiotropic responses and non-linear phenomena in
1298  modeling and adaptation programs, applying growth models at regional scale, and targeting

1299  region-specific adaptation.
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