Hauptseite > Publikationsdatenbank > Short Paper: Accelerating Hyperparameter Optimization Algorithms with Mixed Precision > print |
001 | 1018062 | ||
005 | 20231121201850.0 | ||
024 | 7 | _ | |a 10.1145/3624062.3624259 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-04518 |2 datacite_doi |
037 | _ | _ | |a FZJ-2023-04518 |
100 | 1 | _ | |a Aach, Marcel |0 P:(DE-Juel1)180916 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis |g SC 2023 |c Denver, CO |d 2023-11-12 - 2023-11-17 |w USA |
245 | _ | _ | |a Short Paper: Accelerating Hyperparameter Optimization Algorithms with Mixed Precision |
260 | _ | _ | |c 2023 |b ACM New York, NY, USA |
300 | _ | _ | |a 1776–1779 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1700553840_7160 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Hyperparameter Optimization (HPO) of Neural Networks (NNs) is a computationally expensive procedure. On accelerators, such as NVIDIA Graphics Processing Units (GPUs) equipped with Tensor Cores, it is possible to speed-up the NN training by reducing the precision of some of the NN parameters, also referred to as mixed precision training. This paper investigates the performance of three popular HPO algorithms in terms of the achieved speed-up and model accuracy, utilizing early stopping, Bayesian, and genetic optimization approaches, in combination with mixed precision functionalities. The benchmarks are performed on 64 GPUs in parallel on three datasets: two from the vision and one from the Computational Fluid Dynamics domain. The results show that larger speed-ups can be achieved for mixed compared to full precision HPO if the checkpoint frequency is kept low. In addition to the reduced runtime, small gains in generalization performance on the test set are observed. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Sarma, Rakesh |0 P:(DE-Juel1)188513 |b 1 |
700 | 1 | _ | |a Inanc, Eray |0 P:(DE-Juel1)188268 |b 2 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 3 |u fzj |
700 | 1 | _ | |a Lintermann, Andreas |0 P:(DE-Juel1)165948 |b 4 |
773 | _ | _ | |a 10.1145/3624062.3624259 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1018062/files/FZJ-2023-04518.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1018062 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180916 |
910 | 1 | _ | |a University of Iceland |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)180916 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188513 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188268 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a University of Iceland |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165948 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|