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ABSTRACT

Hyperparameter Optimization (HPO) of Neural Networks (NNs)
is a computationally expensive procedure. On accelerators, such
as NVIDIA Graphics Processing Units (GPUs) equipped with Ten-
sor Cores, it is possible to speed-up the NN training by reducing
the precision of some of the NN parameters, also referred to as
mixed precision training. This paper investigates the performance
of three popular HPO algorithms in terms of the achieved speed-
up and model accuracy, utilizing early stopping, Bayesian, and
genetic optimization approaches, in combination with mixed preci-
sion functionalities. The benchmarks are performed on 64 GPUs
in parallel on three datasets: two from the vision and one from
the Computational Fluid Dynamics domain. The results show that
larger speed-ups can be achieved for mixed compared to full pre-
cision HPO if the checkpoint frequency is kept low. In addition to
the reduced runtime, small gains in generalization performance on
the test set are observed.
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1 INTRODUCTION

The performance of Machine Learning (ML) models is highly de-
pendent on the choice of hyperparameters. The hyperparameter
space is not only spanned by features of the ML architecture, such
as the number of neurons or layers, but also by parameters of the
optimizer, e.g., the learning rate, batch size, or regularization like
weight decay. Hyperparameter Optimization (HPO) describes the
systematic search process for well-performing combinations of
these parameters. Since the different configurations (or "trials") are
independent, the process is ideally suited to be exploited in par-
allel on High-Performance Computing (HPC) systems. This way,
several models across different scientific domains have been im-
proved [2, 19]. However, HPO is still computationally challenging,
as the ML models and the datasets trained on are continuously
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growing in size. There is hence a great interest in reducing the
computational complexity of HPO. From a software perspective,
one method to reduce this complexity is using early stopping tech-
niques, which terminate trials with bad performance before they
are fully trained. Another approach is to apply techniques that more
intelligently sample the hyperparameter space, e.g., to use Bayesian
Optimization (BO) [7] or evolutionary methods [10]. From a hard-
ware perspective, using advanced accelerators, such as Graphics
Processing Units (GPUs) or Tensor Processing Units (TPUs), can
drastically speed up the training process. Employing mixed preci-
sion arithmetics in training has intensively been investigated [16]
and is frequently used in practice for deep Neural Networks (NNs)
at large scale. The literature is lacking an evaluation of this GPU
training feature for HPO tasks.

Therefore, this work aims to investigate Automatic Mixed Pre-
cision (AMP) as one of the improvements for HPO using modern
NVIDIA GPUs, combined with three different HPO algorithms and
a random search baseline. Half and full precision computations are
mixed adaptively to run NN training more efficiently. The perfor-
mance of the AMP approach is evaluated by comparing the corre-
sponding results to those obtained with full precision arithmetics.
Three datasets are used as basis for comparison: two vision datasets,
i.e., cifar-10 [13] and ImageNet [17], and a Computational Fluid
Dynamics (CFD) dataset [1]. The search space is defined by archi-
tectural parameters, such as the number of filters in a Convolutional
Neural Network (CNN), and by optimizer-related parameters, e.g.,
the learning rate or momentum. The evaluations are performed on
the GPU partition of the JURECA-DC machine at the Jiilich Super-
computing Centre [12], using 64 NVIDIA A100 GPUs per HPO run
in parallel. Code for reproducing this work is available on Gitlab!.

The work is structured as follows. In Sec. 2 the background on
HPO and the AMP package is described. Section 3 details the exper-
imental setup, which is used for generating the results presented
in Sec. 4. Finally, Sec. 5 provides the conclusion and future work.

Uhttps://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZ]/mixed-precision-hpo


https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/mixed-precision-hpo

2 BACKGROUND
2.1 Hyperparameter Optimization Methods

In mathematical notation, the performance of a NN with respect
to a metric, e.g., the mean-squared error on a validation dataset, is
described by a function f : X — R, where X is the space of hyperpa-
rameters. The HPO process performs minimization of the objective
function f by discovering combinations of hyperparameters x* € X
such that x* € arg minyc x f(x). Evaluating the objective function
is costly, because it requires the complete training of the NN, which
is the main reason for HPO being compute intensive.

The acceleration of HPO frequently makes use of two approaches:
(1) the evaluation of f on a smaller compute budget using "suc-
cessive halving" [11] and (2) using better-informed hyperparam-
eter combinations. In the first approach, all trials are run until a
certain point in time (usually a few epochs), at which their per-
formance is assessed. A fraction of the under-performing trials
are terminated (early stopping), while continuing with the rest.
HyperBand (HB) [14] was the first algorithm to implement this
concept. Its successor, the Asynchronous Successive Halving Algo-
rithm (ASHA) [15], is nowadays more frequently used. BO belongs
to category (2) and approximates f with a probabilistic model,
where new hyperparameter configurations are chosen based on the
performance of earlier configurations. The Bayesian Optimization
and HyperBand (BOHB) 7] algorithm combines both BO and early
stopping. Furthermore, there exist genetic methods mimicking the
process of evolution for finding optimal hyperparameters. First, an
initial population of different ML models with randomly sampled
hyperparameters is trained for a few epochs (a generation). Then,
the performance is measured, and the models are ranked according
to their results. Subsequently, different genetic operations, e.g., mu-
tations, are applied. In the case of mutation, the worst performing
trials copy the state and hyperparameters of the best performing
models and apply small perturbations to these parameters. One of
the most commonly used evolutionary HPO algorithm is Population
Based Training (PBT) [10]. The iterative nature of the optimization
process allows to find a series of hyperparameters (e.g., schedules).

2.2 Automatic Mixed Precision

Typically, computations and storage of deep NN parameters, e.g., in
the forward and backward pass, use single (32 bit floating point or
FP32) precision. However, with increasing model and dataset sizes,
it is found that not all parameters require such high precision [16],
leading to a potential reduction in computation time and disk space.
One option is to apply half (16 bit floating point or FP16) precision,
supported by GPUs, such as the NVIDIA A100 or AMD MI250.
However, since values smaller than 272% cannot be represented in
FP16 and also just a few non-representable values (Not a Numbers
- NaNs and Infinities — Infs) can break a training, a master copy of
the weights in FP32 is kept in memory. To detect non-representable
values and to avoid the propagation and deterioration of the model
accuracy, the AMP training workflow with gradient scaling exists
(integrated naively into PyTorch), see Algo. 1.

Note that occasionally skipping the optimizer step does not
impair the convergence rate [16]. Due to regularization effects
from the lower precision, some models can even reach higher ac-
curacy [4]. Also, according to NVIDIA, leveraging lower precision
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Algorithm 1 PyTorch AMP Workflow Pseudocode

(1) Compute network forward pass in FP16
(2) Compute loss in FP32; scale by a large factor to ensure
representability in FP16
(3) Compute backward pass in FP16 and check for NaN/Inf
(4) If result contains no NaN/Inf then
(a) Unscale gradients and update optimizer
Else
(a) Skip optimizer update

computations results in large speed-ups. They compare the peak
performance of the A100 GPU with Tensor Cores in half precision
and achieve 312 TFLOPS while it is at 156 TFLOPS in full precisionz,
i.e., a factor of two should be expected.

In the context of HPO, mixed precision computations have so far
been mainly leveraged solely to find suitable network architectures
for low energy inference on certain hardware [3]. They have not
been used to accelerate the HPO process itself, which is what the
present work investigates.

3 EXPERIMENTAL SETUP

3.1 High-Performance Computing System

The experiments are performed on the GPU partition of JURECA-
DC featuring two AMD EPYC 7742 Central Processing Units (CPUs)
with 128 cores @2.25 GHz and four NVIDIA A100 GPUs with
each 40 GB HBM2e memory. For the experiments, CUDA/11.7,
PyTorch/2.0.1, and Ray Tune/2.6. 2 is used. With the distributed
computing library Ray Tune?, hyperparameter trials can be dis-
tributed across different nodes and the NN training across multiple
accelerators using data-parallel methods. For the vision and CFD
datasets, four GPUs and two GPUs are used for each trial. In total,
64 GPUs are allocated for the complete HPO, resulting in 16/32
concurrent HPO evaluations. The number of trials for ASHA and
BOHB is fixed to 128, for PBT and Random Search (RAND) to 16
and 32.

3.2 Datasets and Models

The two vision datasets for benchmarking are cifar-10 and ImageNet-
1k. For both, a 80/20 split of the training set is used to generate a
new validation set for selecting the best performing HPO trial (i.e.,
final model selection). The original validation sets are used as test
sets to evaluate the final performance of the best model to rule out
overfitting. As the cifar-10 dataset is too small in terms of image
dimension to measure substantial speed-ups from FP16 training,
the images are upscaled to 225x255 pixels.

For cifar-10, the hyperparameter search space consists of a fixed
CNN topology, where the number of convolutional filters are varied
for each model stage, adapted from NATS-Bench [6]. Apart from
the architectural parameters, the learning rate, weight decay, and
the number of warm-up epochs are optimized, resulting in an eight-
dimensional search space. In the PBT case, the learning rate and

Zhttps://www.nvidia.com/en-us/data-center/a100/
Shttps://www.ray.io/
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weight decay are adapted after each epoch, yielding a schedule of
multiple learning rates and weight decay values.

ImageNet-1k uses a custom ResNet architecture [8], where the
number of channels vary throughout the model. As a performance
metric, the classification accuracy is used.

The CFD dataset holds turbulent boundary layer flow data from a
simulation [1]. The ML model used is a Convolutional Autoencoder
for flow reconstruction. It consists of an encoder, a latent space (i.e.,
alower dimensional representation of the input), and a decoder. The
encoder and decoder both feature four convolutional layers, where
the first two layers perform down- and up-sampling to achieve the
compression in the latent space, while the other two perform regular
convolution. The model is taken from the AI4HPC repository [9],
which offers a selection of ML application codes optimized for HPC.
The model remains fixed and only optimizer-related parameters
(learning rate, weight decay, momentum, Nesterov momentum, and
warm-up epochs) define the search space. The difference between
the input and the (reconstructed) output flow field is quantified
using the mean squared error metric. Training, validation and test
set are generated by splitting the original dataset time-wise.

4 RESULTS

The results of combining RAND, ASHA, BOHB, and PBT with AMP
are reported in Tab. 1, averaged over three different splits of the
training and validation set. Additionally, the speed-ups achieved by
utilizing AMP over the full precision training are depicted in Fig. 1.
It should be noted that in the CFD use case the model size remains
constant, i.e., it is expected that each training epoch takes roughly
the same amount of time. In the cifar-10 and ImageNet-1k cases
the model size changes, as architectural parameters are part of the
search space, i.e., the runtime per epoch might change from trial to
trial. From Fig. 1 (blue bars) it is obvious that for the CFD model,
using AMP with RAND and ASHA, yields with a factor of ~ 1.3 in
relative speed-up over full precision training. This result is expected
as the model size remains constant and ASHA is essentially random
search with early stopping. Benchmarking a single CFD model
training run (w/o HPO) with full and mixed precision yields a factor
of 2561s/1766s ~ 1.45, which acts as an approximate upper speed-up
limit. For the vision datasets, the attained speed-ups for ImageNet-
1k are even higher with up to 1.56 for ASHA and RAND. However,
they are much lower for cifar-10, which is at 1.07 — 1.13. Larger and
smaller models benefit differently from mixed precision training.
In general, the ImageNet-1k models are one order of magnitude
larger than the cifar-10 models. The benefits of AMP acceleration
hence become notably larger and smaller, depending on the case.
A large speed-up on all datasets is observed for BOHB. Analyzing
the HPO run output showed that BOHB performs early stopping
much less aggressive than ASHA. Even though the same reduction
factor for both algorithms is used (only the top 25% trials are allowed
to continue), BOHB trains each configuration for at least three
epochs while ASHA terminates many already after the first epoch.
Starting a new trial is associated with an overhead that becomes
(relatively) smaller when the trial is trained for longer time. For
this reason a large speed-up is observed in the BOHB case of AMP
compared to the full precision training. As can be seen in Tab. 1,
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Figure 1: Experimental results of running RAND, ASHA,
BOHB, and PBT with different datasets and search spaces.

this leads to much longer total runtimes, but also to sometimes
better test set results.

No speed-up is achieved for the PBT algorithm — AMP even
increases its runtime. The main reason for this is the way the PBT
optimization works. The trials running concurrently are compared
not only in terms of their performance on a metric, but also bad-
performing trials copy the state of the good performing ones. There-
fore, the whole state of the model (including the weights) and the
optimizer is saved in a checkpoint and transferred to another ac-
celerator, where perturbations to the original hyperparameters are
performed and the training is continued. While the training benefits
from the AMP acceleration, the weights are still stored in full pre-
cision, as mentioned in Sec. 2. That is, too frequent checkpointing
and weight transfers create an overhead that cancels out the perfor-
mance gains. One solution is to increase the checkpointing interval.
As shown in Fig. 2, saving the model weights in a checkpoint only
every five instead of every epoch can reduce the overall runtime
of the HPO process (compare red/green to orange/blue lines). This
leads to a noticeable speed-up of the AMP training over the full
precision training with a relative factor of = 1.2.

The AMP heuristic of skipping the optimizer update if non-
representable numbers are detected is already powerful. More tar-
geted strategies, e.g., including some of the AMP parameters in the
HPO search space did not improve performance. In comparison to
one another, the ASHA algorithms seems to be the most favorable
choice, achieving low runtimes with high test set performance.

Overall, the HPO runs that use AMP achieve slightly better per-
formance in terms of accuracy and loss on the test set across almost
all algorithms and datasets. This indicates that random noise intro-
duced by the lower precision computations actually strengthens
the generalization performance of models.

5 CONCLUSION AND FUTURE WORK

In this work, the speed-ups achieved by using different HPO algo-
rithms (software) in combination with mixed precision capabilities
of accelerators featuring Tensor Cores (hardware) have been inves-
tigated. It was shown that, depending on the checkpoint frequency
or the model size, the computation can be accelerated by a factor
of up to 1.56 on NVIDIA A100 GPUs. State-of-the-art accelerators,
such as NVIDIA H100 GPUs, can run computations in even lower
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Dataset Metric ASHA BOHB PBT RAND
CFD Runtime (AMP/full) 30465 /3992s 89945 /13319 s 7428 5/ 7383 s 52535/ 6825 s

Test mse (AMP/full)  3.20 x 1073 /3.31 x 107 2.63x1073/2.77 x 1073 3.40 x 1073/3.40 x 10™>  4.50 x 1073/ 4.50 x 1073
cifar-10 Runtime (AMP/full) 3293 s/3511s 9591 s/ 13858 s 2720 s / 2583 s 3006 s /3394 s

Test acc. (AMP/full) 0.7798 / 0.7714

Runtime (AMP/full)
Test acc. (AMP/full)

10844 s/ 16915 s

ImageNet-1k 0.7006/0.6975

0.7768 / 0.7830

26354 s /40495 s
0.7055 / 0.7042

0.6721/0.6093 0.7677 / 0.7560

5642 s /5233 s
0.6021 / 0.5868

6664 s /10249 s
0.6758 / 0.6762

Table 1: Comparison of running different HPO algorithms with full precision and AMP training, averaged over three random

seeds. Better results are underlined.

HPO with PBT: Validation loss over time
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Figure 2: Comparison of running PBT using different check-
pointing intervals on CFD dataset.

precision (primarily for Transformer models) with a potential to
achieve even large speed-ups in the future. Additionally, other HPO
frameworks that run on Message Passing Interface (MPI), e.g., Deep-
Hyper [5] or Propulate [18], could be explored in addition to Ray
Tune.
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