TY  - JOUR
AU  - Bosoni, Emanuele
AU  - Beal, Louis
AU  - Bercx, Marnik
AU  - Blaha, Peter
AU  - Blügel, Stefan
AU  - Bröder, Jens
AU  - Callsen, Martin
AU  - Cottenier, Stefaan
AU  - Degomme, Augustin
AU  - Dikan, Vladimir
AU  - Eimre, Kristjan
AU  - Flage-Larsen, Espen
AU  - Fornari, Marco
AU  - Garcia, Alberto
AU  - Genovese, Luigi
AU  - Giantomassi, Matteo
AU  - Huber, Sebastiaan P.
AU  - Janssen, Henning
AU  - Kastlunger, Georg
AU  - Krack, Matthias
AU  - Kresse, Georg
AU  - Kühne, Thomas D.
AU  - Lejaeghere, Kurt
AU  - Madsen, Georg K. H.
AU  - Marsman, Martijn
AU  - Marzari, Nicola
AU  - Michalicek, Gregor
AU  - Mirhosseini, Hossein
AU  - Müller, Tiziano M. A.
AU  - Petretto, Guido
AU  - Pickard, Chris J.
AU  - Poncé, Samuel
AU  - Rignanese, Gian-Marco
AU  - Rubel, Oleg
AU  - Ruh, Thomas
AU  - Sluydts, Michael
AU  - Vanpoucke, Danny E. P.
AU  - Vijay, Sudarshan
AU  - Wolloch, Michael
AU  - Wortmann, Daniel
AU  - Yakutovich, Aliaksandr V.
AU  - Yu, Jusong
AU  - Zadoks, Austin
AU  - Zhu, Bonan
AU  - Pizzi, Giovanni
TI  - How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
JO  - Nature reviews / Physics
VL  - 6
SN  - 2522-5820
CY  - London
PB  - Springer Nature
M1  - FZJ-2023-04521
SP  - 45-58
PY  - 2024
AB  - Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:001103174800001
DO  - DOI:10.1038/s42254-023-00655-3
UR  - https://juser.fz-juelich.de/record/1018070
ER  -