

OHBM 2023

Poster 559

Validation of dynamical whole-brain models in high-dimensional parameter spaces

Kevin J. Wischnewski^{1,2,3}, Simon B. Eickhoff^{1,2}, & Oleksandr V. Popovych^{1,2}

¹Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; ²Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ³Institute of Mathematics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Email: k.wischnewski@fz-juelich.de Website: www.fz-juelich.de/inm/inm-7

Introduction

- between resting-state dynamics and structural brain data can be investigated via mathematical whole-brain models, which describe a subject's brain activity by interpretable model parameters and simulated functional connectivity.
- However, computational challenges in parameter optimization constrain highdimensional model studies and their level of model personalization.
- 2 mathematical optimization algorithms to explore high-dimensional moderate parameter spaces computational costs, and validate wholebrain models by optimizing between 2 and 103 free model parameters simultaneously.
- Aim: To gain an insight into the model validation in high-dimensional parameter utility for potential and spaces personalized simulations of human brain dynamics.

Methods

- 272 subjects (Human Connectome Project [1]) with individual empirical structural and functional connectivity (eSC and eFC, resp.)
- Brain atlases: Schaefer 100 (Sch100) [2] and Harvard-Oxford 0% (HO0Thr) [3] atlases with N = 100 and N = 96cortical regions, resp.
- Computational model: Kuramoto model [4] of coupled phase oscillators
- Phase dynamics of brain region $i \in \{1, ..., N\}$: $\dot{\theta}_i(t) = 2\pi f_i + \frac{c}{N} \sum_{j=1}^{N} k_{ij} \sin(\theta_j (t - \tau_{ij}) - \theta_i(t)) + \sigma \eta_i(t)$ simulated BOLD signals simulated FC (sFC)

Model validation:

Pearson Correlation (sFC,eFC) MAXIMIZATION

Detecting optimal, subject-specific model parameters:

- C and τ free, $\sigma = 0.3$ fixed, f_i from empirical BOLD: **2D**
- C, τ and σ free, f_i from empirical BOLD: **3D**
- C, τ , σ and f_i free: 103D (Sch100) / 99D (HO0Thr)

Model variables Description Description Model variables Coupling delay (signal Phase of region *i* at transmission time) $\theta_i(t)$ between region i and time t Free parameter of Average fiber path natural frequency PL_{ii} length between region (0.01 - 0.1 Hz) ofi and jregion i Free parameter of Free parameter of global coupling global delay strength Relative coupling Free parameter of $k_{ij} = \frac{SC_{ij}}{\langle SC \rangle}$ strength between noise intensity region *i* and *j* Number of Independent noise streamlines between SC_{ij} perturbation of region $\eta_i(t)$ region i and j in the i at time t eSC matrix Simulated BOLD $sin(\theta_i)$ <.> Averaging operator signal of region i

methods:

Covariance Matrix Adaptation Evolution Strategy (CMAES) [5]: Global population-based optimization technique, best trial solutions from every iteration (generation) are selected to form **Optimization** the distribution mean of the population for the next step Bayesian Optimization (BO) [6]: Sequential design strategy for global optimizations of black-box functions, probabilistic surrogate model for the goal function, adjusted after every new function evaluation

Results

Fig.1: Goodness-of-fit for personalized model simulations

Fig.2: Mean resource consumption per subject for 30 algorithm executions

Fig.3: Example of high-dimensional simulation outcomes for one subject

Fig.4: Reliability of modeling results across repeated algorithm executions (Sch100)

Reliability assessed via intraclass correlation (ICC, [7]): Between-subject variance relative to total variance (between and within subjects). **DMf**: Matrix of differences in optimized frequency parameters f_i $(\mathbf{DMf}_{i,j} = |f_i - f_j|).$

Fig.5: Higher goodness-of-fit for males than for females

Sch100 HO0Thr

128 males and 144 females. Effect sizes computed with Rosenthal's formula [8] for Wilcoxon rank-sum test

Discussion

Summary:

- Empirical measurements can be replicated best by models validated in high-dimensional parameter spaces.
- A high goodness-of-fit (GoF) can be obtained for several configurations of "optimal" model parameters, which are less reliable than the observed sFC and GoF.
- Differences between males and females appear to be more pronounced when the model validation is performed in high-dimensional parameter spaces.

Conclusions:

- New horizons for personalized brain modeling can be opened up by mathematical optimization algorithms which enable the exploration of whole-brain models in high-dimensional parameter spaces.
- Multiple algorithm executions per subject are necessary in view of the complexity of high-dimensional parameter spaces and the unfeasibility of a confirmatory grid search.

Outlook:

- Whole-brain models properly validated bear a huge potential for more precise and personalized studies.
- The model validation in high-dimensional parameter spaces can potentially contribute to the exploration of phenotypical differences in brain research.
- Models that closely replicate empirical brain imaging data may serve as a risk-free test bench for medical interventions.

References: [1] Van Essen et al. (2013). "The WU-Minn Human Connectome Project: an overview." Neuroimage 80: 62-79. [2] Schaefer et al. (2018). "Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI." Cerebral Cortex 28(9): 3095-3114. [3] Desikan et al. (2006). "An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest." Neuroimage 31(3): 968-980. [4] Cabral et al. (2011). "Role of local network oscillations in resting-state functional connectivity." Neuroimage 57(1): 130-139. [5] Hansen (2006). "The CMA Evolution Strategy: A Comparing Review." In: "Towards a New Evolutionary Computation." Studies in Fuzziness and Soft Computing 192. Springer, Berlin, Heidelberg. [6] Martinez-Cantin (2014). "BayesOpt: A Bayesian Optimization, Experimental Design and Bandits." Journal of Machine Learning Research 15: 3735–3739. [7] Liljequist et al. (2019). "Intraclass correlation - A discussion and demonstration of basic features." PloS One 14(7):e0219854. [8] Rosenthal & Rosnow (1991). "Essentials of behavioral research" (2nd ed.). New York: McGraw-Hill.