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Detecting optimal, subject-specific model parameters:

Covariance Matrix Adaptation Evolution Strategy (CMAES)
/ [5]: Global population-based optimization technique, best trial
solutions from every iteration (generation) are selected to form
Optimization the distribution mean of the population for the next step
> Bayesian Optimization (BO) [6]: Sequential design strategy
methods: for global optimizations of black-box functions, probabillistic
surrogate model for the goal function, adjusted after every new
function evaluation

N
Aim: To gain an insight into the model

validation in high-dimensional parameter
spaces and its potential utility for
personalized simulations of human brain .
dynamics.
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Results

Fig.1l: Goodness-of-fit for personalized model simulations
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DMf: Matrix of differences in optimized frequency parameters f;

computed with Rosenthal’s formula [8]
(DMf, = |f; - fil).

for Wilcoxon rank-sum test.
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Discussion

Summary: Conclusions: Outlook:
New horizons for personalized brain modeling can be .
opened up by mathematical optimization algorithms
which enable the exploration of whole-brain models In

high-dimensional parameter spaces. .

Whole-brain models properly validated bear a huge
potential for more precise and personalized studies.

« Empirical measurements can be replicated best by -
models validated in high-dimensional parameter spaces.

The model validation in high-dimensional parameter
spaces can potentially contribute to the exploration of
phenotypical differences in brain research.

* A high goodness-of-fit (GoF) can be obtained for several
configurations of “optimal” model parameters, which
are less reliable than the observed sFC and GoF. « Multiple algorithm executions per subject are necessary in

view of the complexity of high-dimensional parameter

spaces and the unfeasibility of a confirmatory grid search.  Models that closely replicate empirical brain imaging
data may serve as a risk-free test bench for medical

Interventions.

« Differences between males and females appear to be
more pronounced when the model validation is
performed in high-dimensional parameter spaces.
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