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Validation of dynamical whole-brain models in 

high-dimensional parameter spaces

MethodsIntroduction

• The link between resting-state brain

dynamics and structural brain data can be

investigated via mathematical whole-brain

models, which describe a subject’s brain

activity by interpretable model parameters

and simulated functional connectivity.

• However, computational challenges in

parameter optimization constrain high-

dimensional model studies and their level of

model personalization.

• We apply 2 mathematical optimization

algorithms to explore high-dimensional

parameter spaces at moderate

computational costs, and validate whole-

brain models by optimizing between 2 and

103 free model parameters simultaneously.

• 272 subjects (Human Connectome Project [1]) with 

individual empirical structural and functional connectivity

(eSC and eFC, resp.)

• Brain atlases: Schaefer 100 (Sch100) [2] and Harvard-

Oxford 0% (HO0Thr) [3] atlases with 𝑁 = 100 and 𝑁 = 96
cortical regions, resp.

• Computational model: Kuramoto model [4] of coupled 

phase oscillators

• Phase dynamics of brain region 𝑖 ∈ 1, … , 𝑁 :

ሶ𝜃𝑖 𝑡 = 2𝜋𝑓𝑖 +
𝐶

𝑁
σ𝑗=1

𝑁 𝑘𝑖𝑗 sin 𝜃𝑗 𝑡 − 𝜏𝑖𝑗 − 𝜃𝑖(𝑡) + 𝜎 𝜂𝑖(𝑡)

simulated BOLD signals simulated FC (sFC)

Model validation:

Pearson Correlation (sFC,eFC) MAXIMIZATION 

Detecting optimal, subject-specific model parameters:

• 𝐶 and 𝜏 free, 𝜎 = 0.3 fixed, 𝑓𝑖 from empirical BOLD: 2D

• 𝐶, 𝜏 and 𝜎 free, 𝑓𝑖 from empirical BOLD: 3D

• 𝐶, 𝜏, 𝜎 and 𝑓𝑖 free: 103D (Sch100) / 99D (HO0Thr)

Results

Discussion
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Model variables Description Model variables Description

𝜃𝑖(𝑡)
Phase of region 𝑖 at 

time 𝑡
𝜏𝑖𝑗 =

𝑃𝐿𝑖𝑗

< 𝑃𝐿 >
𝜏

Coupling delay (signal 

transmission time) 

between region 𝑖 and 

𝑗

𝑓𝑖

Free parameter of 

natural frequency 

(0.01 − 0.1 Hz) of 

region 𝑖

𝑃𝐿𝑖𝑗

Average fiber path 

length between region 

𝑖 and 𝑗

𝐶
Free parameter of 

global coupling 

strength

𝜏
Free parameter of 

global delay

𝑘𝑖𝑗 =
𝑆𝐶𝑖𝑗

< 𝑆𝐶 >

Relative coupling 

strength between 

region 𝑖 and 𝑗
𝜎

Free parameter of 

noise intensity

𝑆𝐶𝑖𝑗

Number of 

streamlines between 

region 𝑖 and 𝑗 in the 

eSC matrix

𝜂𝑖(𝑡)
Independent noise 

perturbation of region 

𝑖 at time 𝑡

< . > Averaging operator sin(𝜃𝑖)
Simulated BOLD 

signal of region 𝑖

➢ Aim: To gain an insight into the model

validation in high-dimensional parameter

spaces and its potential utility for

personalized simulations of human brain

dynamics.

Optimization

methods:

Covariance Matrix Adaptation Evolution Strategy (CMAES) 

[5]: Global population-based optimization technique, best trial 

solutions from every iteration (generation) are selected to form 

the distribution mean of the population for the next step

Bayesian Optimization (BO) [6]: Sequential design strategy 

for global optimizations of black-box functions, probabilistic 

surrogate model for the goal function, adjusted after every new 

function evaluation

Fig.1: Goodness-of-fit for personalized model simulations

Fig.3: Example of high-dimensional 

simulation outcomes for one subject

128 males and 144 females. Effect sizes 

computed with Rosenthal‘s formula [8] 

for Wilcoxon rank-sum test.

Outlook:

• Whole-brain models properly validated bear a huge

potential for more precise and personalized studies.

• The model validation in high-dimensional parameter

spaces can potentially contribute to the exploration of

phenotypical differences in brain research.

• Models that closely replicate empirical brain imaging

data may serve as a risk-free test bench for medical

interventions.

Summary:

• Empirical measurements can be replicated best by

models validated in high-dimensional parameter spaces.

• A high goodness-of-fit (GoF) can be obtained for several

configurations of “optimal” model parameters, which

are less reliable than the observed sFC and GoF.

• Differences between males and females appear to be

more pronounced when the model validation is

performed in high-dimensional parameter spaces.

Conclusions:

• New horizons for personalized brain modeling can be

opened up by mathematical optimization algorithms

which enable the exploration of whole-brain models in

high-dimensional parameter spaces.

• Multiple algorithm executions per subject are necessary in

view of the complexity of high-dimensional parameter

spaces and the unfeasibility of a confirmatory grid search.

Fig.2: Mean resource 

consumption per subject for 

30 algorithm executions

Sch100

Wilcoxon signed-

rank test was 

applied.

HO0Thr

Fig.5: Higher 

goodness-of-fit for 

males than for females

Fig.4: Reliability of modeling results across 

repeated algorithm executions (Sch100)

Reliability assessed via intraclass correlation (ICC, [7]):

Between-subject variance relative to total variance (between and within subjects).

DMf: Matrix of differences in optimized frequency parameters 𝑓𝑖

(DMfi,j = |𝑓𝑖 - 𝑓𝑗|).
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