001018118 001__ 1018118
001018118 005__ 20240708132819.0
001018118 037__ $$aFZJ-2023-04562
001018118 041__ $$aEnglish
001018118 1001_ $$0P:(DE-Juel1)190723$$aZeng, Yuan$$b0$$eFirst author$$ufzj
001018118 1112_ $$aThe 21st International Conference on Solid-State Protonic Conductors$$cFukuoka$$d2023-09-16 - 2023-09-22$$gSSPC-21$$wJapan
001018118 245__ $$aTailoring Properties of BaZr0.8-xCe0.2YxO3-δ Proton Conductors for Enhanced Performance in Electrochemical Devices
001018118 260__ $$c2023
001018118 3367_ $$033$$2EndNote$$aConference Paper
001018118 3367_ $$2BibTeX$$aINPROCEEDINGS
001018118 3367_ $$2DRIVER$$aconferenceObject
001018118 3367_ $$2ORCID$$aCONFERENCE_POSTER
001018118 3367_ $$2DataCite$$aOutput Types/Conference Poster
001018118 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1700549864_5239$$xAfter Call
001018118 520__ $$aSolid oxide fuel and electrolysis cells (SOFC/SOEC) based on ceramic proton conductors efficiently convert chemical energy into electricity and vice versa at intermediate operating temperatures (400-600 °C)[1]. Acceptor doped BaCeO3 and BaZrO3, are the most extensively studied proton conductors. BaCeO3 exhibits high proton conductivity but shows lower chemical stability in H2O and CO2 environments. Conversely, BaZrO3 possesses higher chemical stability but lower proton transport ability at the grain boundaries[2]. Preparing Ba(Zr,Ce)O3 solid solutions with the appropriate Zr/Ce ratio at the B-site in the perovskite crystal structure is a compromise strategy. In this work, 20 mol.% of Ce was introduced into the lattice of Y-doped BaZrO3, and 0.5 wt.% of NiO was applied as a sintering aid. The Y2O3 substituent amount varies within the range of 10-30 mol.% in order to study the influence of Y on the phase formation, microstructure, hydration behavior and electrical performance. Y-riched phase has been found in samples with Y content exceeding 25 mol.%. And excessive Y2O3 substitution has a negative impact on the grain boundary conductivity. In addition, mechanical performance and thermo-chemical stability is also taken into consideration to evaluate the suitability of this material for electrochemical devices.
001018118 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001018118 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001018118 7001_ $$0P:(DE-Juel1)187594$$aSchäfer, Laura-Alena$$b1$$ufzj
001018118 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b2$$ufzj
001018118 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b3$$eCorresponding author$$ufzj
001018118 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b4$$ufzj
001018118 909CO $$ooai:juser.fz-juelich.de:1018118$$pVDB
001018118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190723$$aForschungszentrum Jülich$$b0$$kFZJ
001018118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187594$$aForschungszentrum Jülich$$b1$$kFZJ
001018118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b2$$kFZJ
001018118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b3$$kFZJ
001018118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b4$$kFZJ
001018118 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001018118 9141_ $$y2023
001018118 920__ $$lyes
001018118 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001018118 980__ $$aposter
001018118 980__ $$aVDB
001018118 980__ $$aI:(DE-Juel1)IEK-1-20101013
001018118 980__ $$aUNRESTRICTED
001018118 981__ $$aI:(DE-Juel1)IMD-2-20101013