001     1018118
005     20240708132819.0
037 _ _ |a FZJ-2023-04562
041 _ _ |a English
100 1 _ |a Zeng, Yuan
|0 P:(DE-Juel1)190723
|b 0
|e First author
|u fzj
111 2 _ |a The 21st International Conference on Solid-State Protonic Conductors
|g SSPC-21
|c Fukuoka
|d 2023-09-16 - 2023-09-22
|w Japan
245 _ _ |a Tailoring Properties of BaZr0.8-xCe0.2YxO3-δ Proton Conductors for Enhanced Performance in Electrochemical Devices
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1700549864_5239
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Solid oxide fuel and electrolysis cells (SOFC/SOEC) based on ceramic proton conductors efficiently convert chemical energy into electricity and vice versa at intermediate operating temperatures (400-600 °C)[1]. Acceptor doped BaCeO3 and BaZrO3, are the most extensively studied proton conductors. BaCeO3 exhibits high proton conductivity but shows lower chemical stability in H2O and CO2 environments. Conversely, BaZrO3 possesses higher chemical stability but lower proton transport ability at the grain boundaries[2]. Preparing Ba(Zr,Ce)O3 solid solutions with the appropriate Zr/Ce ratio at the B-site in the perovskite crystal structure is a compromise strategy. In this work, 20 mol.% of Ce was introduced into the lattice of Y-doped BaZrO3, and 0.5 wt.% of NiO was applied as a sintering aid. The Y2O3 substituent amount varies within the range of 10-30 mol.% in order to study the influence of Y on the phase formation, microstructure, hydration behavior and electrical performance. Y-riched phase has been found in samples with Y content exceeding 25 mol.%. And excessive Y2O3 substitution has a negative impact on the grain boundary conductivity. In addition, mechanical performance and thermo-chemical stability is also taken into consideration to evaluate the suitability of this material for electrochemical devices.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
700 1 _ |a Schäfer, Laura-Alena
|0 P:(DE-Juel1)187594
|b 1
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)162228
|b 2
|u fzj
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:1018118
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162228
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21