TY - CONF
AU - Buffat, Jim
AU - Pato, Miguel
AU - Alonso, Kevin
AU - Auer, Stefan
AU - Carmona, Emiliano
AU - Maier, Stefan
AU - Müller, Rupert
AU - Rademske, Patrick
AU - Rascher, Uwe
AU - Scharr, Hanno
TI - DEEP LEARNING BASED PREDICTION OF SUN-INDUCED FLUORESCENCE FROM HYPLANT IMAGERY
PB - IEEE
M1 - FZJ-2023-04569
SP - 2993 - 2996
PY - 2023
N1 - This work is funded by the Helmholtz Initiative and Networking Fund, Helmholtz AI, Deutsches Zentrum für Luft- und Raumfahrt and Forschungszentrum Jülich GmbH. The authors gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the supercomputer JURECA [1] at Forschungszentrum Jülich.Jülch Supercomputing Centre, “JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülch Supercomputing Centre,” Journal of large-scale research facilities, vol. 7, no. A182, 2021. [Online]. Available: http://dx.doi.org/10.17815/jlsrf-7-182
AB - The retrieval of sun-induced fluorescence (SIF) from hyper- spectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method com- bining semi-supervised deep learning with an existing spec- tral fitting method. A validation study with in-situ SIF mea- surements shows high sensitivity of the deep learning method to SIF changes even though systematic shifts deteriorate its absolute prediction accuracy. A detailed analysis of diurnal SIF dynamics and SIF prediction in topographically variable terrain highlights the benefits of this deep learning approach.
T2 - International Geoscience and Remote Sensing Symposium
CY - 21 Jun 2023 - 21 Jun 2023, Pasadena (USA)
Y2 - 21 Jun 2023 - 21 Jun 2023
M2 - Pasadena, USA
LB - PUB:(DE-HGF)8
UR - <Go to ISI:>//WOS:001098971603050
DO - DOI:10.1109/IGARSS52108.2023.10282828
UR - https://juser.fz-juelich.de/record/1018125
ER -