001     1018125
005     20240403082810.0
024 7 _ |a 10.1109/IGARSS52108.2023.10282828
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04569
|2 datacite_doi
024 7 _ |a WOS:001098971603050
|2 WOS
037 _ _ |a FZJ-2023-04569
041 _ _ |a English
100 1 _ |a Buffat, Jim
|0 P:(DE-Juel1)188104
|b 0
|e Corresponding author
111 2 _ |a International Geoscience and Remote Sensing Symposium
|c Pasadena
|d 2023-06-21 - 2023-06-21
|w USA
245 _ _ |a DEEP LEARNING BASED PREDICTION OF SUN-INDUCED FLUORESCENCE FROM HYPLANT IMAGERY
260 _ _ |c 2023
|b IEEE
300 _ _ |a 2993 - 2996
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1700147862_15188
|2 PUB:(DE-HGF)
500 _ _ |a This work is funded by the Helmholtz Initiative and Networking Fund, Helmholtz AI, Deutsches Zentrum für Luft- und Raumfahrt and Forschungszentrum Jülich GmbH. The authors gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the supercomputer JURECA [1] at Forschungszentrum Jülich.Jülch Supercomputing Centre, “JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülch Supercomputing Centre,” Journal of large-scale research facilities, vol. 7, no. A182, 2021. [Online]. Available: http://dx.doi.org/10.17815/jlsrf-7-182
520 _ _ |a The retrieval of sun-induced fluorescence (SIF) from hyper- spectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method com- bining semi-supervised deep learning with an existing spec- tral fitting method. A validation study with in-situ SIF mea- surements shows high sensitivity of the deep learning method to SIF changes even though systematic shifts deteriorate its absolute prediction accuracy. A detailed analysis of diurnal SIF dynamics and SIF prediction in topographically variable terrain highlights the benefits of this deep learning approach.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Pato, Miguel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alonso, Kevin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Auer, Stefan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carmona, Emiliano
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maier, Stefan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Rupert
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rademske, Patrick
|0 P:(DE-Juel1)162306
|b 7
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 9
773 _ _ |a 10.1109/IGARSS52108.2023.10282828
|y 2023
856 4 _ |u https://ieeexplore.ieee.org/document/10282828
856 4 _ |u https://juser.fz-juelich.de/record/1018125/files/igarss2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018125
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188104
910 1 _ |a DLR, Remote Sensing Technology Institute
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RHEA Group c/o European Space Agency (ESA)
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a DLR, Remote Sensing Technology Institute
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a DLR, Remote Sensing Technology Institute
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a DLR, Remote Sensing Technology Institute
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a DLR, Remote Sensing Technology Institute
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21