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ABSTRACT

The retrieval of sun-induced fluorescence (SIF) from hyper-
spectral imagery is an ill-posed problem that has been tackled
in different ways. We present a novel retrieval method com-
bining semi-supervised deep learning with an existing spec-
tral fitting method. A validation study with in-situ SIF mea-
surements shows high sensitivity of the deep learning method
to SIF changes even though systematic shifts deteriorate its
absolute prediction accuracy. A detailed analysis of diurnal
SIF dynamics and SIF prediction in topographically variable
terrain highlights the benefits of this deep learning approach.

Index Terms— solar-induced fluorescence, hyperspectral
sensors, radiative transfer, machine learning

1. INTRODUCTION

Sun-induced fluorescence (SIF) has gained much attention
as an important biophysical parameter over the last decades.
Sensor and retrieval method development have set the path
to establish spatially contiguous SIF estimates. The close
causal link of the SIF signal to the photosynthetic machin-
ery of plants is a valuable tool to infer plant dynamics re-
motely. Prominent algorithms for SIF retrieval from hyper-
spectral data, such as the well-established Improved Fraun-
hofer Line Discrimination (iFLD) [1] and the Spectral Fitting
Method (SFM) [2] have been developed and tested notably on
HyPlant data [3]. HyPlant is an airborne hyperspectral sensor
operated as a test version for the FLORIS sensor of the up-
coming spaceborne FLEX mission aiming at SIF retrieval on
a global scale [4]. Thus, the development of accurate and ver-
satile SIF estimators for this sensor are a useful step towards
fulfilling the ambitious requirements of the FLEX mission.

HyPlant Campaign |FLOX |D] Location

SEL-2018 (600m) v 17212 Selhausen, DE
WST-2019 (1500m) v 53(16) Braccagni, IT
NRS-2019 (1500m) - 27 (12) Braccagni, IT
TR32-2019 (1800m)| - 66 (8) Jiilich, DE
GLO-2021 (1150m) | Vv 88 (7) Mollerussa, ES

CKA-2022 (350m) v’ 37(12) Klein Altendorf, DE

Table 1: Compiled data sets. FLOX: availability of simulta-
neous FLOX data. |D|: used # patches [ x 103] (# acquisitons)

2. DATA & METHODS

We present a neural network trained with a novel semi-
supervised loss function constructed for SIF retrieval from
HyPlant imagery in the OzA-band. HyPlant is an assembly
of two hyperspectral push-broom sensors. The current work
makes use of radiometrically calibrated acquisitions in sensor
geometry of one of those sensors (FLUO) from the years
2018-2022 as input to a neural network. It covers the range
670 - 780 nm with a spectral sampling of 0.11 nm and a mean
FWHM of 0.27 nm [3]. FLUO was designed for SIF retrieval
in the O2A and O9B bands and is operated on airborne plat-
forms at flight heights varying from 350 m to 1800 m. Tab. 1
lists the data sets used in this work.

The semi-supervised SIF retrieval method presented here
does not rely on SIF ground truth, as would be needed for
supervised learning. Instead, we use the prediction of SIF
(and of other relevant variables) in conjunction with a simu-
lation model reconstructing the signal. The methodology is
thus very similar to SFM, hence we’ll refer to the network as
SFMNN. In SFM a least-squares estimation of model param-
eters is performed to retrieve fluorescence and reflectance. In
contrast to this, we use the objective function minimized in
SFM as a loss formulation for training our neural network
in a semi-supervised fashion. In the same logic, the same



simulation model as used in SFM has been implemented to
promote comparability in a validation study (cf. Sec. 3). This
validation study is conducted with in-situ iFLD SIF measure-
ments derived from data acquired by FLOX systems (www.jb-
hyperspectral.com). These measurements have a footprint of
the order of a square meter allowing to derive high quality
SIF estimates as ’ground truth’. We use FLOX SIF estimates
within a 60 s window around the overflight time for a perfo-
mance analysis comparing SFMNN to SFM and iFLD SIF
estimates from HyPlant imagery.

2.1. Signal Reconstruction

SFMNN is a network trained to decompose and reconstruct
HyPlant at-sensor radiance in the spectral range 750 - 761.7
nm. It predicts a set of parameters from a shared encoding
for each pixel in patches (17 x 17 pixels) cropped from the
FLUO radiance product. This parameter set is fed into a de-
terministic four-stream radiative transfer model [5] to evalu-
ate the residual between the reconstructed and measured at-
sensor radiance, cf. sim in Fig. 1. In more detail, the signal
reconstruction requires spectral functions for the reflectance,
fluorescence emission and atmospheric transfer functions. We
model the reflectance R()\) as a linear function and the fluo-
rescence f(A) as a Gaussian with fixed mean at 740 nm and
fixed standard deviation oy = 20 nm requiring the prediction
of a reflectance slope dR/d\ and offset R750nm and a fluo-
rescence amplitude fo,. The atmospheric functions needed
for the four-stream model are estimated by first deriving a
PCA decomposition over existing estimations of these trans-
fer functions for specific data sets. Since data acquisition of
HyPlant is conducted under comparable atmospheric condi-
tions we assume that we can fit new data with parameteriza-
tions £y lying in the span of this PCA decomposition. The
network trained to perform the decomposition task is outlined
in Fig. 1. Each of the encoding and decoding modules is a
residual network. In the present work we used an input di-
mension configuration of (100, 100, 50, 50) for the encoder
and (100, 50, 50, 50) for all of the decoders. Linear heads
were used to cast the decoders outputs to the required parame-
ter dimension. As outlined below, we required constant ¢ AT
over single patches. We realized this by taking mean over the
atmospheric decoders’ outputs.

2.2. Weighting of the Reconstruction Error

The SIF signal-to-noise ratio increases strongly in the OzA-
band. Accordingly, we weight the reconstruction error by

L Y £ >
Wy =( 5 =555 1)
<U§\Z)\’f§’/0§/ p(L,f)

where we denote f denotes the predicted at-sensor fluo-
rescence, o) the estimated variance of the total at-sensor
radiance and (... ), ) the mean over a fixed distribution
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Fig. 1: Outline of SFMNN. R, froc and taTym denote re-
flectance, top-of-canopy fluorescence and atmosphere param-
eter groups. Fj : solar irradiance, ,: zenith angle

of at-sensor radiance and fluorescence emission in a sim-
ulated HyPlant acquisition line. With this weighting, the
Moore-Penrose solution to the linearized retrieval problem
with known reflectance constitutes a Best Linear Unbiased
Estimator (BLUE).

2.3. Loss and Constraint Formulation

The estimation of the parameterization for reconstruction of
at-sensor radiance without ancillary data is an ill-posed prob-
lem [6]. Additional constraints are needed to minimize the re-
construction error in a plausible solution space. Additionally
to the functional constraints implemented as described above
we assume the atmosphere to vary only over distances signif-
icantly larger than individual spatial pixels. We implement
this architecturally by deriving predictions ¢y over spatial
patches of fixed pixel size. Besides these constraints, we in-
cluded two regularizers in the loss promoting physiological
and physical validity. First, we can safely assume to have non-
zero SIF only in pixels with NDVI > 7. This is a similar con-
straint as is used in SFM to find a suitable atmospheric param-
eterization. Accordingly, we set the same threshold 7 = 0.15.
Secondly, we assume that the diffusive part of the at-sensor
radiance is low. Thus, we punish the network if the total atmo-
spheric transfer function ty,; = LT R™1/ED cos(0s) > 1,
where L% is the predicted radiance without SIF contribution.
R denotes the pixel reflectance and E? cos(6;) the solar ir-
radiance modulated by the solar zenith angle (SZA). In sum-
mary, we train our network with the loss

Uy, 9) =
- <(y()\) — 9"+ (wA (W) = g(/\))g)aR:0>

+ x f 6 (NDVL, > t) + 7, ReLU(fior — 1)

(lr,f + v Ly + N INDVI + Ya latm) (Y, )
AEW

2
for measured and predicted spectra y and ¢ in the spectral
range V. The brackets denote the mean over the spectral
window W, dR = 0 a term that doesn’t contribute to the
gradient of network weights of R and ¢ denotes a Boolean.
We set throughout all experiments v¢ = 5, yn = 1, 7, = 1
and W =[750, 761.7] nm.
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Fig. 2: Slopes sa¢,,, (filled, left) and sy (open, right) of the
marginal distribution p(At.t|Ah) and p(f|Ah). Each data
point represents a single acquisition.

3. RESULTS & DISCUSSION

3.1. Training Set-up

The data sets on which we base the following analysis were
compiled from the campaign data sets listed in Tab. 1. We
selected subsets of the data guided by the principle to cover
a wide range of observational conditions and close temporal
matches with ground-based FLOX measurements for valida-
tion.

The PCA decomposition used to model the atmospheric
transfer functions in the simulation model was computed from
MODTRAN generated atmospheric functions for several data
subsets from 2018 and 2019 taken at different flight heights.
These atmospheric functions are estimated as a side-product
when predicting SIF with the SFM baseline.

3.2. Comparison with in-situ SIF measurements

In order to validate the SIF prediction accuracy of SFMNN,
we make use of the FLOX derived SIF measurements. Tab. 2
shows the performance of SFMNN predictions along with the
iFLD and SFM baseline methods. We compute the Pear-
son correlation 7pear, R? scores and the mean absolute er-
ror (MAE) between the HyPlant and FLOX derived SIF esti-
mates. R? is understood to be computed on HyPlant derived
SIF estimates that were linearly calibrated to SIFprox such
that the influence of systematic biases and under- and over-
estimations were excluded from this metric. The linear cal-
ibration was derived as the mean of a cross-validation over
subsets of the data sets.

It can be observed that the relative SIF variation of
SFMNN, as expressed by R? and Tpear, 18 on par with the
baselines. On the other hand, mean absolute errors (MAE)
are in almost all cases significantly larger than for SFM. This
is due to systematic shifts in the prediction of individual ac-
quisitions. We show this by listing the performance results
for SFMNN under a calibration with SFM SIF predictions. In
the columns with subscript ¢ we list the results for SFMNN

SIF predictions linearly calibrated to SFM SIF per flight line
by fitting linearly the SFM-SFMNN prediction distribution.
This calibration greatly decreases the MAE in all cases where
SFMNN underperformed, though consistency as measured
by 7pear 18 NOt guaranteed to be stable.

Data Set | ppear ppear | R2 - R2 IMAE MAE.| N
SEL SFM 0.91 0.83 0.87 10
2018 SFMNN| 0.96 0.95 [0.91 0.91|0.62 0.71 |10

iFLD 0.81 0.65 0.65 10
WST SEM -0.47 0.22 0.53 21
2019 SFMNN| 0.51 -0.18%|0.26 0.03| 0.81 0.44 |21

iFLD -0.63 0.39 4.88 21
GLO SFM 0.98 0.97 0.34 5
2021 SFMNN| 0.95 0.97 {091 0.92|0.50 0.12 | 5

iFLD 0.88 0.77 0.79 5
CKA SFM 0.63* 0.39 0.38 6
2022 SFMNN|0.76* 0.84 |0.57 0.69| 0.51 0.40 | 6

iFLD  [-0.63* -2.10 1.17 4
Table 2: FLOX derived SIF measurements compared to

SFMNN, SFM and iFLD SIF predictions. 7pea, maked with *

have p > 0.05. MAE is given in units of mW nm~*m~2 sr 1.

3.3. Height dependent O;A-band variation

In order to evaluate whether SFMNN can be applied in to-
pographically variable terrain, we test its ability to disentan-
gle the atmospheric transfer from fluorescence and reflectance
there. Variable topography impacts the OzA-band depth as
the distance through air changes. The baseline SFM explains
this change in Oy A-band depth by a change in SIF. In order to
investigate the behaviour of SFMNN under strong Oz A-band
depth changes we train SFMNN on the NRS-2019 and TR32-
2019 data sets that comprise acquisitions with strong eleva-
tion changes Ah. In order to avoid issues in the early phases
of training that can arise with these data sets, we warm start
the training from the WST-2019 network used in Sec.3.2.
Only acquisitions around noon were included in this analy-
sis to exclude low incidence angles that induce large variance
due to simultaneous presence of sun-facing and shadowed hill
slopes. We highlight that non-homogeneous surface condi-
tions (i.e. vegetative cover) across the height changes can
introduce non-topography related variance such that we ex-
pect the clearest results in flight lines with the largest height
change.

In Fig. 2 we show the slope of linear fits to the marginal
distributions p(Atioi|AR) and p(f|Ah), where Aty =
min tgor / max tyot denotes the band depth. We observe from
small sy that SFMNN is able to produce approximately con-
stant SIF distributions over varying topography. It does so by
changing the atmospheric transfer functions accordingly at a
rate which is constant across different data sets as can be seen
from the approximately constant sa¢,_,. Thus, Fig. 2 suggests



SFM SFMNN

counts [logig]

Bsem [MW nm~1 sr1 m=2 h=2]
Bseunn [MW nm~1 sr=t m=2 h=2]

700 02 o4 .
NDVI NDVI

©

Fig. 3: NDVI-g distributions for SFM (left) and SFMNN
(right), where 3 denotes the second order derivative of the
time series per pixel.

that SFMNN is able to consistently predict O A-band depth
variation with height. This effect is most pronounced in flight
lines with the largest Ah > 50 m where the topographic
effect on the Oy A-band depth is most important.

3.4. Diurnal Variation

In order to evaluate the predicted time dynamics of SIF we
trained and evaluated a network on the WST-2019 data set. A
subset of the flight lines in this data set constituted a time
series sampling a whole day (19/06/2023) with 9 repeated
acquisitions covering approximately the same footprint. We
subsequently fitted second order polynomials to coregistered
pixel predictions forming time series and used its second or-
der derivative 3 as a measure of SIF variability over the course
of the day. In Fig. 3 we compare a spatial pixels mean NDVI
value with 8 derived from SFM (left) and SFMNN (right)
predictions. The NDVI-g distributions coincide well for pix-
els with NDVI > 0.6. An upper limit Ssppnn < 0 can be
observed in Fig.3 which is not present in the SFM predic-
tions. This upper limit is to be expected from a physiological
argument as we expect SIF to peak around noon and to van-
ish in the morning and evening. Equally, an increasing abso-
lute value of 5 with NDVI can be motivated physiologically.
Clearly, the semi-supervised training has allowed SFMNN to
learn internal representations respecting this constraint.

4. CONCLUSION & OUTLOOK

This work has shown that SFMNN achieved on par perfor-
mance to baseline methods in terms of predicting relative
SIF variation. SFMNN could be shown to be consistently
sensitive to SIF changes present in in-situ measurements.
However, SFMNN did not outperform SFM in terms of ab-
solute SIF estimation. Good performance of SFMNN under
linear calibration per acquisition with SFM statistics in al-
most all cases has highlighted that SFMNN is suffering from
systematic shifts. Analysis regarding the adaptivity of the

atmospheric prediction and diurnal SIF dynamics highlighted
the benefits of using a neural network with physically mo-
tivated constraint formulation for SIF retrieval. SFMNNs
higher consistency is a valuable contribution to improving
SIF estimation from HyPlant imagery and offers the potential
to be applied to other hyperspectral data sources in a straight-
forward manner. A more complete analysis and discussion
of possibilities to reduce the need for calibration is currently
being prepared.
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