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Abstract. We present the LOcal Track Finder (lotf) algorithm, a method that performs charged-particle
trajectory reconstruction using the Straw Tube Tracker, one of the central trackers of the antiProton
ANnihilation at DArmstadt (PANDA) detector. The algorithm builds upon the neighboring relations of
the tubes to connect individual hits and form track candidates. In addition, it uses a local fitting procedure
to handle regions where several tracks overlap and utilizes a system of virtual nodes to reconstruct the
z-information of the particle trajectories. We generated 30,000 events to assess the performance of our
approach and compared its global track assignment efficiency with respect to two other track reconstruction
methods. lotf has (1) an average of 85% of found tracks, (2) the largest number of Fully Pure tracks, (3)
the lowest amount of incorrect reconstructions, and (4) is significantly faster than the other two approaches.
Further, we compared the z-reconstruction performance with one of the two alternative methods and show
that lotf improves the median z-error by a factor of 8.7. Finally, we tested our method using 3,750 data
sets composed of 4 events each, demonstrating that our approach handles cases in which events are mixed.
The raw (without parallelization) average reconstruction rate is about 68,000 hits/s, which makes the
present algorithm promising for online data selection and processing.

1 Introduction

Observing exotic particle states is important in character-
izing the properties of the fundamental building blocks of
matter. Producing unexpected or not yet observed particle
states with a small cross-section requires a vast number of
particle collisions to create a detectable signal above the
background noise. This complex task is now achievable
with modern particle detectors that operate at very high
luminosities and interaction rates. The upcoming antiPro-
ton ANnihilation at DArmstadt experiment (PANDA1,
[1] [2]), that will be installed at the Facility of Antipro-
ton and Ion Research (FAIR2, [3]), will provide such a
setup. It will study interactions between protons or nu-
clei and antiprotons (pp, pA) using an antiproton beam
with a momentum between 1.5 and 15 GeV/c, provided
by the High Energy Storage Ring (HESR, [4]) that im-
pinges on a target of hydrogen or noble elements. The
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pp and pA collisions typically produce a wide variety of
particles which makes them suited to explore e.g. exotic
particle states. PANDA will work with two main opera-
tional modes: the high-resolution mode with interaction
rates of up to 2 MHz in [2], and the high-luminosity mode
with interaction rates of up to 20 MHz and data rates up
to 200 Gigabytes per second [5]. Traditionally, particle-
collision experiments use hardware triggers to reduce the
data stream. However, this is not foreseen with PANDA
which will exploit software-based event filtering using on-
line track reconstruction algorithms to select physically
relevant events. Hence, efficient and fast track reconstruc-
tion algorithms are needed to identify the particle trajec-
tories in a time frame matching the detector acquisition
rate.

Most state-of-the-art track reconstruction algorithms
are composed of two steps: a track finding step, where the
individual hits are grouped into track candidates using
Pattern Recognition techniques, and a track fitting step,
where the particle properties are determined based on the
tracks found. These two steps are often performed con-
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currently such that the particle properties (e.g. their mo-
mentum) are estimated during the reconstruction. Sev-
eral techniques exist to perform the track finding step,
usually categorized into local or global approaches. Lo-
cal approaches, such as the Kalman filter [6], reconstruct
particle paths by iteratively connecting hits one by one.
Global approaches, such as the Hough transform [7], tackle
the reconstruction by determining all track candidates si-
multaneously using the entire set of detections at once.

The performance of a given event reconstruction algo-
rithm is usually measured in terms of (i) its efficiency, i.e.
the fraction of real tracks that have been accurately iden-
tified; (ii) its purity, i.e. its ability to discard false hits
or handle noisy data; and (iii) its computational speed.
In practice, the design of the experiment itself must also
be accounted for when implementing a track reconstruc-
tion algorithm. This is because specifics related to the ef-
ficiency of the data acquisition system and instrumental
noise are also crucial aspects to consider. In general, all
these aspects are tightly related to each other. For ex-
ample, designing a very efficient track reconstruction pro-
cedure is often too slow to enable fast decision-making
in real-time, and vice-versa. Hence, in-situ track recon-
struction algorithms require an optimal balance between
efficiency/purity and computational time, and must be op-
timized for the data acquisition it will work with.

In the context of the PANDA experiment, several
strategies were developed over the past years. These meth-
ods build upon techniques such as the Hough transforma-
tion [8, 9], the Recursive Annealing Fit [10], the cellular
automaton with Riemann mapping [11], the triplet finder
[12], attribute-space-connected morphological filters [13,
14], or deep-learning [15, 16]. Additionally, a significant
effort focused on parallelizing these algorithms using e.g.,
FPGAs [17] or GPUs [8, 18]. Finally, some algorithms fo-
cused on supplementing track finders, e.g. the PzFinder
[10, 19] that aims at extracting the longitudinal position
of the charged particles.

In this paper, we present the LOcal Track Finder
(lotf) algorithm, a novel method to perform track recon-
struction using the Straw Tube Tracker (STT, [20]), an es-
sential sub-detector for the track reconstruction and event
identification of PANDA. The focus of lotf is to enable
an efficient in-situ track reconstruction. We developed a
local approach using the neighboring relations of the tubes
to connect individual hits and form track candidates (e.g.,
similar to [11, 12, 14]). Further, lotf builds upon a simple
parametric fitting to disentangle individual trajectories in
regions where several tracks overlap. Finally, it uses a sys-
tem of virtual nodes, a technique originally proposed by
Babai et al. [14], to reconstruct the z-information of the
charged-particle trajectories. Its low computational com-
plexity enables a fast and efficient track reconstruction,
which makes it promising for online event selection.

This paper is organized as follows: Section 2 presents
the PANDA central STT detector. Section 3 describes the
implementation of our algorithm. Section 4 assesses the
performance of our approach and Section 5 presents our

Fig. 1: Top: a schematic representation of the PANDA
detector system with the beam-target and STT high-
lighted, adapted from [21]. In this work, we perform track
reconstruction using the information from the STT, lo-
cated around the beam-target interaction point. Bottom:
a schematic representation of the STT, adapted from [20].

conclusions and discusses future prospects. Appendix 5
details the main algorithms implemented in lotf.

2 The PANDA Straw Tube Tracker

The PANDA tracking system consists of central and for-
ward trackers. The algorithm developed in this work per-
forms track reconstruction using the STT system, which
full description is provided in [20]. We detail here the most
important characteristics.

In PANDA, the STT is a cylindrical volume located
around the beam-target interaction point (see Figure 1),
such that the target beam, which has a full-width diam-
eter of ∼3 mm, will pass through its center. The angular
acceptance of the STT is from 20◦ to 140◦. Since PANDA
will use a central magnetic field of 2T generated by a su-
perconducting solenoid, particles with a transverse mo-
mentum larger than 50 MeV will transit, partly or fully,
through the STT.

Regarding its configuration, the STT cylindrical shape
is characterized by an inner radius of 15 cm, an outer
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Fig. 2: The x-y projection of the tube positions in the STT (left), with a zoom-in on the top left section (right). The
grey circles indicate the center-point coordinates of the axial tubes in the volume. The red and blue crosses show the
center-point coordinates of the skewed tubes with an angle of +2.9 and −2.9 degrees, respectively.
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Fig. 3: Left: the x-y trajectories of 5 particles (in different colors) in a single event simulation. Right: the digitized
version of the middle panel, showing the tubes that fired (i.e. were hit) for each track.

radius of 42 cm, and a length of 165 cm. Within this
volume are arranged 4,224 straw tubes organized in 27
plane-parallel layers, with layer 0 being the closest to the
beam-target interaction point. Each tube is 140 cm long
with a 10 mm internal diameter and can be mounted in
two different ways. In the innermost and outermost layers,
the tubes are positioned parallel to the z-axis (beamline).
In the eight middle layers, the straw tubes are skewed by
−2.9 and +2.9 degrees with respect to the z-axis. The
presence of these skewed tubes enables one to derive the
z-information of the particle trajectory (see Section 2.2).

Each straw tube is filled with an Ar/CO2 gas mix-
ture and contains a thin wire along its axis. An electric

field is generated in the gas-filled area such that, when a
charged particle passes through the tube, the gas becomes
ionized. The gas ionization generates a current in the wire
which is used as a readout signal (hereafter, we refer to
these tubes as activated or hit). The time it takes the elec-
trons to reach the wire is called the drift time. In general,
the drift time is used to infer the isochrone radius, i.e.,
the radius of the cylindrical surface that represents the
possible positions that the particle might have traversed
along the tube. Then, the exact particle path can be re-
constructed by fitting a trajectory that is tangential to all
the isochrone radii (see, e.g., Figure 3 in [10]). The track
reconstruction algorithm presented in this work does not
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use drift time information. This choice is motivated by
two aspects. First, recovering the particle hit positions
along each tube is not vital for identifying track candi-
dates because one can simply group hits based on their
neighborhood relations. The reconstruction of the exact
particle trajectory can be performed later when one needs
to extract tighter constraints on the particle momentum.
Second, accounting for the isochrone radii involves an ad-
ditional computational cost that can be prohibitive for
online track reconstruction.

We must note that the drift time has important global
implications for the track reconstruction in PANDA. If the
event rate is smaller than the maximal drift time of the
straw tubes (≈ 250 ns), hits belonging to successive events
can overlap during the readout of the STT data, which is
referred to as event-mixing. Event-mixing has a relatively
small influence at 2 MHz (1 event every 500 ns) but has
strong repercussions for track reconstructions based on the
high-luminosity mode (20 MHz, 1 event every 50 ns). We
discuss this aspect further in Section 4.2.

In this work, we represent the STT volume using a
graph where each node represents a single tube. Each node
is parameterized by the half-length, the three-dimensional
direction vector, and the coordinates of the center point of
the tube it represents. Additionally, these nodes contain
the list of the tubes’ direct neighbors whose number can
vary between 2 and 22 (skewed tubes or axial tubes on the
edges of the STT volume have a varying number of neigh-
bors). In the following sections, we present successively
the x-y and z-y projections of the STT volume.

2.1 x-y projection

Figure 2 shows the x-y projection of the STT volume based
on the center-point coordinates of all the tubes. The tubes
in the intermediate layers that have a skew angle with re-
spect to the beam of +2.9 and −2.9 degrees are indicated
with red and blue crosses, respectively. Figure 2 present
a simulated event with five particle trajectories projected
on the x-y plane of the STT. To generate this event, we
used the PandaRoot software developed by the PANDA
collaboration [22] which contains a simulation and digi-
tization package. We used the FRITIOF (FTF) genera-
tor with an antiproton beam momentum of 1.5 GeV/c.
The left panel shows the simulated trajectories of the five
charged particles resulting from a pp interaction, accord-
ing to the transport model GEANT4 [23–25]. The right
panel shows the digitization of the particles traveling along
these paths based on the center-point coordinates of the
tubes that are activated for each particle path. The exact
hit positions along the skewed tubes can vary by ±3 cm
compared to the center-point coordinates. This causes the
x-y projection of these digitized tracks to look discontin-
uous around the intermediate layers (i.e., the green and
red tracks in the right panel).

An accurate track reconstruction in the x-y plane is
crucial to determine the trajectory curvature and recon-
structing the transverse momentum component of a par-
ticle. In the next section, we show the STT coordinates

projected on the z-y plane, which is used to reconstruct
the z-information of the particle tracks and derive the lon-
gitudinal momentum component.

2.2 z projection

The reconstruction of the particle tracks in the z direction
is much more complex than in the x-y plane. This is be-
cause, in the global coordinate system of the detector, the
z center-point position of almost all the straw and skewed
tubes is at z = 35 cm (the interaction point is at x,y,z =
(0,0,0)). A small number of skewed tubes, located at the
sector boundaries, have a shorter length, hence they have
a different z-coordinate compared to the full-length tubes.

For any activated tube, we do not have information
about the exact z-coordinate of the particle hit. To re-
fine the amount of information available in the z direc-
tion and improve the reconstruction of the z-information,
we use a system of virtual nodes, a technique introduced
in Babai et al. [13]. The concept of virtual nodes builds
upon the design of the STT which includes layers of tubes
having different slopes in the z direction. For two neigh-
boring tubes having different z-slopes, there exists a vir-
tual intersection point in the three-dimensional space that
corresponds to the point where the distance between the
two tubes is minimal. This virtual point is represented
schematically in the top panel of Figure 4. The x, y, and z
coordinates of this virtual point are strictly defined such
that, if these two tubes are activated, one can assume that
the particle passed through this virtual intersection point.
This assumption is not always correct as it depends on the
particle incident trajectory, yet it provides a first estimate
to recover the particle z-information.

The procedure to determine the x, y, and z coordi-
nates of the virtual nodes is the following: for all pairs
of neighboring tubes, we extract the direction vectors of
the two tubes and find the unit vector perpendicular to
both lines. We then determine the point on this perpen-
dicular line that is equidistant to both tubes. We take the
coordinates of this point as the coordinates of the virtual
node for this particular pair of tubes. All virtual nodes are
set with only two neighbors which are the pair of tubes
used to derive their coordinates. A virtual node is set as
activated if both these tubes are activated.

The bottom panels of Figure 4 present the extended
grid, in the x-y (left panel) and z-y (right panel) planes,
including the virtual nodes in green. For the x-y plane,
virtual nodes span in the inter-layers between the axial,
+2.9, and −2.9 degrees skewed tubes. For the z-y plane,
these nodes substantially help to refine the discretization
3. Hence, they provide key information for the reconstruc-
tion of the particle trajectories in the z-direction. We must
note that, while these virtual nodes were already intro-
duced by Babai et al. [13, 14], the authors used a differ-
ent approach to compute their coordinates. For each pair

3 In all this work, we only use the x-y and z-y plane to visu-
alize the track reconstruction.
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Fig. 4: Top: a schematic view of the position of a virtual node (in red) for a pair of tubes having different z-slopes (Figure
from [13]). Bottom left: the x-y projection of the extended grid. Black crosses indicate the center-point coordinates
of the axial tubes, and red and blue crosses show the center-point coordinates of the skewed tubes with an angle of
+2.9 and −2.9 degrees, respectively. The virtual nodes appear in green. Bottom right: same but for the z-y projection.
Because almost all the straw and skewed tubes span over the entire longitudinal length of the STT, their z center-point
position is at z = 35 cm (the beam-interaction point is at z = 0). A small number of skewed tubes, located at the
sector boundaries, have a shorter length, hence, they have a different z-coordinate.

of tubes with different slopes, the authors defined a two-
dimensional plane using the central-point x-y coordinates
of each tube. Then, they computed the virtual point coor-
dinates as the coordinates of the point at the center of this
two-dimensional plane. The positions of the virtual nodes
using their approach significantly differ from our method
which assumes that the particle passed through the point
where the distance between both tubes is minimal. As a
consequence, the z-coordinates of the virtual nodes in [14]
lie in a narrower range, and this has important shortcom-
ings for the z-reconstruction. In Section 3.1, we show that

our approach provides a better reconstruction of the z-
information.

The z-y projection of the particle tracks shown in Fig-
ure 3 is presented in Figure 5. The left panel presents the
simulated trajectories of the five particles in the z-y plane
and the right panel displays the z-y coordinates of the vir-
tual nodes (stars) that are activated. The comparison of
the two panels illustrates that virtual nodes only provide
a first estimate for the particle z-transit. Section 3.2 fur-
ther details how we build upon these nodes to reconstruct
tracks that resemble the simulated ones.
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Fig. 5: Left: the simulated paths in the z-y plane for the five charged particles in the event shown in Section 2.1. The
red and green tracks are overlapping in the upper left part. Right: the coordinates of the virtual nodes (stars) that
are activated for each track.

3 The LOTF algorithm

In this work, we aim at providing an algorithm suit-
able to perform an in-situ track reconstruction using the
STT information, both in the high-resolution (2 MHz in-
teraction rate) and high-luminosity (20 MHz interaction
rate) operational modes. Performing a real-time recon-
struction is challenging given the diversity of physical pro-
cesses, involving complex trajectories’ morphology with
long-lived particles and tracks from secondary decay parti-
cles. Hence, the tracking system must have both high track
reconstruction efficiency and a high reconstruction rate
matching the data acquisition rate. To achieve these re-
quirements, LOTF builds upon low-computational com-
plexity techniques, selected for their potential in extract-
ing complex, irregular, and potentially overlapping pat-
terns in the STT. Additionally, while some track recon-
struction methods perform the track reconstruction in a
different parameter space to (e.g., the Hough space [8]
or orientation space [14]), lotf only uses the Cartesian
space (i.e., the x, y, and z coordinates of the different hits),
hence avoiding potential overheads due to space transfor-
mations.

Section 3.1 details the x-y reconstruction strategy and
Section 3.2 describes the procedure to recover the z-
information of the charged-particle trajectories.

3.1 x-y reconstruction

Our approach to reconstructing the particle trajectories
in the x-y plane consists of three steps:

– The connect phase identifies track candidates based on
hits located in the inner- and outer-most tube layers.

– The fitting phase extends the reconstruction in regions
where several track candidates overlap using a para-
metric fitting procedure.

– The merging phase combines track candidates to pro-
duce the final reconstructed tracks.

We describe these phases in the following sub-sections.

3.1.1 The connect phase

Algorithm 1 in Appendix A.1 details the procedure used
during the connect phase, and we summarize the main
steps here. Algorithm 1 aims at identifying portions of
tracks that are isolated. To achieve this, we extract the
activated nodes that have less than five neighbors (we con-
sider as neighbors the activated tubes directly surrounding
the current node) and that belong to the inner- and outer-
most layers of the STT (we refer to these layers as the
“limit layers"). We note that the choice of using five neigh-
bors as a threshold is empirical, but we find that it gen-
erally characterizes configurations where tracks are over-
lapping. Additionally, we extract nodes located in limit
layers because they usually correspond to a track extrem-
ity. We start from these nodes and iteratively look among
the surrounding neighbors to identify the track continu-
ation. These neighbors are added to the current track if
there is a low complexity in assessing whether they belong
to the same track or not. We consider a case to be complex
if the current node

1. has too many neighbors (more than 5),
2. has neighbors in multiple directions (i.e., located on

all surrounding layers),
3. has no other activated neighbors surrounding it.

We note that #1 and #2 usually suggest that there
might be several adjacent or overlapping tracks around
the region where the current node is located. These cases
are complex and are resolved during the fitting phase. On
the other hand, one might encounter case #3 if a track
is complete or if there exists a gap such that the next
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l = 4

l = 3

l = 2

l = 1

l = 0
(a) (b) (c) (d) (e)

Fig. 6: A schematic example showing the functioning of the connect procedure. In practice, our algorithm is applied
to the STT hexagonal geometry where each tube can have up to 22 neighbors. In this schematic, for simplicity, we
define a squared geometric configuration where each tube (empty black circle) can have at most 8 neighbors.
Orange circles are activated tubes, green circles are tubes that belong to the track being reconstructed, and blue circles show
the current list of activated neighbors at each step. The left panel shows the index of each layer l. In (a), we show the set of
activated tubes. In (b), we start from a node in the inner layer (l = 0). This node has only one active neighbor, thus the case is
trivial and we add this neighbor to the current track. In (c), we have two neighbors on layer 2. Both these nodes are adjacent
and located consistently with respect to the current direction of the track, hence we connect both to the current track. In (d),
we have neighbors both in the upper and lower layer. Given that we were adding nodes on increasing layer number (from l = 0
to l = 2), we connect only the node that belongs to layer 3. In (e), we encounter a complex case where we have two neighbors
on the next layer, but these nodes are not adjacent. Finding which of these nodes should be added is not trivial. The connect
procedure stops and the reconstruction will continue during the fitting phase.

l = 4

l = 3

l = 2

l = 1

l = 0
(a) (b)

Fig. 7: The continuation of the schematic example pre-
sented in Figure 6. Orange circles show activated tubes,
green circles represent tubes that belong to the track be-
ing reconstructed, and blue circles show the current list of
neighbors. The black stars show the position of the anchor
nodes for the green track. On layer l = 2, the anchor node
position corresponds to the average of the coordinates of
the two green nodes. In (a), we fit a parametric line using
the position of the three most recent anchors in the track.
The green square shows the predicted position of the next
hit given the line equation and the layer distance. The
right blue node has the smallest euclidean distance to this
prediction, hence it is connected to the track in (b).

neighbors are not direct neighbors of the last-added node.
To disentangle both cases, we label the track as complete
if it starts and ends in the limit layers of the STT. If
this is not the case, we flag the track to be investigated
during the merging phase, as there might exist another
track candidate it can be connected to.

The connect procedure is sufficient to find all “simple"
isolated tracks with no or few complex neighboring cases
entirely. However, it does not perform a complete recon-
struction for adjacent or overlapping tracks which are only
partially found at the end of this phase. Figure 6 shows

a schematic representation of a track reconstruction using
the connect procedure.

3.1.2 The fitting phase

During this phase, we resume the reconstruction of par-
tially reconstructed tracks. Algorithm 2 in Appendix A.2
details the fitting procedure and we present the main steps
here. As mentioned in the previous section, the connect
procedure provides incomplete track portions in regions
where multiple particle trajectories might cross or be too
close to each other. In such configurations, finding the
track continuation based on the list of neighbors around
the last node added to the track is not trivial. We use a
linear fitting approach based on a system of anchors nodes
to resolve these complex cases. Anchor nodes are supple-
mental nodes representing at maximum three individual
tubes on the same layer. Since several adjacent tubes on
the same layer might be activated by the transit of a single
particle, anchor nodes provide a simple way to join these
multiple detections in a single anchor (we define the size
of an anchor node as the number of tubes it represents).

Anchor nodes are determined on the fly during the
track reconstruction. We construct a new anchor node
each time a node from a different layer than the previ-
ous node is added to the track. The coordinates of a given
anchor node are obtained by taking the average of the co-
ordinates of the nodes it contains. In general, the anchor
system virtually smooths the current track candidate by
only taking a smaller subset of nodes. Since the spatial
distribution of these anchor nodes is smaller than for the
individual tubes, they are well suited for the fitting pro-
cedure used to identify the best track continuation.

The fitting strategy is implemented as follows: we use
the x-y coordinates of the three closest anchor nodes (at
most) to the track extremity and fit a parametric line in
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the x-y plane, which equation is given by x = x0 + x1 ∗ t
and y = y0 + y1 ∗ t with t the independent variable. The
choice of a linear fit might appear counter-intuitive since
particles have circular motions, whose curvature depends
on their momenta. Yet, as emphasized by, e.g., Figure 3,
straight lines provide a fair approximation for the par-
ticle trajectories on small scales (three different layers
at most). Importantly, this approach has a small com-
putational complexity which makes it promising to min-
imize the overall computational time. We note that we
also tested a quadratic fitting approach, and found that
the computational overhead was negligible when using a
limited number of points. Nevertheless, we did not find sig-
nificant improvements in the fit quality, and this approach
did not perform well for short track candidates (less than
three anchor nodes, hence not enough information to con-
strain the fit), or when applied to low-momentum particles
circling within the STT volume. Therefore, we use the lin-
ear fitting approach as the default option in lotf, but the
current code implementation enables the user to switch to
a quadratic fit if preferred.

The resulting line equations enable us to predict the
position of the next hit based on the current portion of
the track identified. Using this prediction, we look among
all potential neighbors to find the one closest to it. We
add a fixed threshold of 5 cm to the maximal distance a
node can have compared to the predicted position. 5 cm
is roughly two times the maximum distance that can be
found between the center point of two neighboring tubes.
Hence, using this threshold avoids adding nodes unrealisti-
cally far from the current track extremity. If a neighboring
node successfully meets this criterion, and if it was not al-
ready assigned to another track candidate, it is added to
the reconstructed track. On the other hand, if the node
was already connected to another track candidate, we test
whether both tracks should be merged according to their
spatial orientation. To achieve this, we derive a local di-
rection vector around the track extremities such that both
tracks are flagged to be merged if the angle between their
direction vectors is larger than 110 degrees (180 degrees
means that both vectors are parallel). We note that this
criterion has been chosen empirically as the value that
works best after a visual inspection of a few events. Using
a higher (lower) value decreases (increases) the likeliness
that two tracks are merged. In general, we find that vary-
ing this criterion by ±20 degrees has a limited impact
on the reconstruction performance of event-based data
with low track multiplicity because the number of complex
merging cases (i.e., cases where a single track candidate
could be merged to different tracklets) remains small. Nev-
ertheless, we have not extensively tested the limit of this
value in the context of event-mixing data sets where the
number of overlapping particle trajectories can be much
larger (see Section 4.2). We plan to work on optimizing
this criterion in future developments focused on improv-
ing the high-luminosity track reconstruction performance.

For any track, the fitting procedure ends if (i) there are
no further neighbors; (ii) no good neighbor is matching

the predicted position of the next hit; or (iii) we found a
neighboring track to connect with the current one.

Figure 7 illustrates the fitting procedure using the
schematic configuration shown in Figure 6.

3.1.3 The merging phase

Before merging the tracks that were flagged during the fit-
ting phase, we perform a global check of all tracks to iden-
tify particle trajectories that might still be incomplete. As
specified in Section 3.1.1, we assume that a track is com-
plete if its two extremities are on the boundaries of the
STT. Incomplete tracks, as defined using this criterion,
are either tracks whose extremities lie in the intermedi-
ate layers of the STT or tracks having a hit gap such
that the remaining portion of the track to be connected
is not directly neighboring the current track extremity. In
the latter scenario, we typically reconstruct several track
candidates that correspond to a single simulated trajec-
tory. To determine whether a track candidate should be
extended despite not having direct neighbors, we look for
other track candidates within a radius of 5 cm around its
extremities. As noted in Section 3.1.2, this distance rep-
resents a gap of at least two tubes between the two track
extremities. If we find one neighboring track within this
radius, and if its direction vector is consistent with the
current track (using the same criterion as detailed pre-
viously, i.e., the angle between their direction vectors is
larger than 110 degrees), both are flagged to be merged.

Once we tested all tracks, for each pair of tracks to be
merged, their respective nodes are combined consistently
into a new path candidate.

3.1.4 Example of x-y reconstructions

In this section, we visualize two cases of track reconstruc-
tion in the x-y plane using the lotf algorithm. These ex-
amples are simply for illustration, a complete performance
assessment is presented in Section 4.

Figure 8 details the different steps of the track recon-
struction algorithm for an event with five tracks (hereafter
referred to as event A). Out of these five trajectories, one
is isolated (upper left sector), two others are overlapping
(upper right sector), and two are adjacent such that they
have common neighbors (lower left sector). The bottom
left panel presents the reconstruction status after the con-
nect phase. The bottom left panel shows that the blue
trajectory is already purely reconstructed (we refer to a
track as purely reconstructed when it contains all and only
the hits from a single simulated track) after the connect
phase. The four tracks that are adjacent or overlapping
are only partially reconstructed.

After the fitting phase, the four incomplete tracks have
been expanded such that they are either complete or flagged
to be merged during the next phase (the black stars show
the pair of tracks flagged for merging).

Finally, at the end of the merging phase, the brown
and pink tracks are purely reconstructed, and the red and
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Fig. 8: An example of event reconstruction. Top row: the simulated paths of five particles shown in different colors
(left) and the digitized tracks in the STT (right). Bottom row, left to right: the status of the reconstruction after the
connect phase (each different marker/color represents a different track candidate), the reconstruction after the fitting
phase (the black stars are set near tracks that will be merged in the third phase), and the final x-y reconstruction
after the merging phase.
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Fig. 9: Another example of track reconstruction for an event with five tracks. Left to right: the simulated particle
trajectories, the digitized tracks, and the x-y reconstruction using the lotf algorithm.
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Fig. 10: An example illustrating how we use virtual nodes to refine the x-y hit coordinates along the skewed tubes. The
simulated particle trajectory is shown with a green dotted line. The center-point coordinates of the activated tubes are
indicated with black circles. The black arrows represent the skewed tubes, with the head pointing in different directions
to denote the +2.9 and −2.9 degrees skew angles. Virtual nodes are shown with red diamonds. Left: we compute the
intersection between the segment determined by two virtual nodes (red line) and the direction vector of the skewed
tubes to refine the particle hit positions (blue stars) along the skewed tubes. Right: the final refined coordinates of
the particle hits along all skewed tubes. For each skewed tube, determining the x-y hit coordinates precisely enables
us to derive the z-information of the particle trajectory around these layers.

green reconstructions hold 94% of all the hits from their
respective simulated tracks. Additionally, the shape of the
reconstructed tracks is consistent with the simulated tra-
jectories shown in the top left panel. This is because, as
further detailed in the next section, we re-determine each
node’s coordinates in order to correct for the discontinu-
ities around the skewed layers.

Figure 9 shows another event, hereafter referred to as
event B, where a low-momentum secondary electron de-
scribes a circle in the STT volume (brown trajectory). The
lotf algorithm provides an almost complete reconstruc-
tion of the trajectory of this particle: more than 76% of
the nodes in the simulated track have been recovered in a
single reconstructed track, and only the outer part of the
loop has been wrongly connected to another track (in pur-
ple). The connection between the purple track and part
of the brown trajectory is a consequence of our merging
approach that considers tracks incomplete if they end in
the middle layers of the STT. We plan to improve this
issue in the future by refining the criterion that decides
whether two tracks should be merged.

3.2 z coordinates reconstruction

By construction, the ability of the algorithm to accurately
recover the z-information for each track depends on its x-
y reconstruction performance. This is because, as detailed
in Section 2.2, the z-reconstruction is based on the virtual
nodes system, where each activated virtual node must be
correctly assigned to the reconstructed track it belongs to.
To achieve the z-reconstruction on the fly without using
the tubes’ drift time information, we use the well-defined

coordinates of the virtual nodes to approximate the par-
ticle incident trajectory around the skewed tubes.

We implemented the procedure Cor-
rectSkewedXY, the pseudo-code of which is given
in Appendix A.3, to approximate the particle incident
trajectory around the skewed layers. We describe its
functioning here. Between two virtual nodes located on
different layers, there are always two layers of skewed
tubes. Hence, the local particle incident trajectory can be
approximated using the line determined by two virtual
nodes. The intersection between this line and the slope
vector of the skewed tubes provides an estimate of the
exact x-y position of the particle hit along the skewed
tubes. An example detailing this procedure is presented
in Figure 10.

Given the relatively small skew angle of these tubes,
the typical uncertainty on the z coordinate determined in
this way is significantly larger than the typical error on
the x and y coordinates. For example, a ±7.5 mm differ-
ence in the x-y estimates will lead to an uncertainty of
±15 cm in the estimated z coordinate. However, as the
number of z-hits recovered for each track increases, the
error on the reconstructed z-momentum will decrease. We
note that the determination of the z-information for a par-
ticle trajectory is only possible if the particle crossed at
least two layers of tubes with different z-inclinations.

To obtain the z-information consistently for all the
nodes in a track, we fit a parametric line in the z-y plane
(y = y0 + y1 ∗ t and z = z0 + z1 ∗ t with t the inde-
pendent variable)4 using all available z-coordinates from
the virtual nodes and skewed tubes. e note that charged

4 The choice of using the z-y plane instead of the z-x plane
is arbitrary, and has no impact on the reconstruction results.
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Fig. 11: The result of the reconstruction of the z-
information for the event A. Top: the simulated trajec-
tories of the particles in the z-y plane. Bottom: the z-
reconstruction obtained with the lotf algorithm using
an interpolation system that fits a z-parametric line.

particles moving in a solenoidal magnetic field follow heli-
cal trajectories, hence, their projection onto the y-z plane
repeats periodically rather than following a straight line.
Nevertheless, for most particle tracks that are relevant in
the context of the PANDA experiment, the radius of the
helix is much larger than the traversed STT dimensions.
As a result, the curvature of the particle paths is not very
noticeable when projected onto the y-z plane so the tra-
jectories can be approximated by straight lines.

We note that there exists some scatter in the re-
constructed hit-coordinates, and these values are typi-
cally contained within a relatively small coordinate range
(∼10 cm for the y coordinates, see e.g., Figure 5). Addi-
tionally, we also lack the z-information in the inner part
of the STT (between the beam-target interaction point
and the STT inner radius of 16 cm). This means that
additional constraints must be used to avoid getting unre-
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Fig. 12: Same as Figure 11 but for the event B. The z-
information of the purple track is not correctly recon-
structed because its x-y reconstruction includes nodes
from two independent trajectories (see the discussion in
the text). Additionally, we only recover a single loop from
the brown trajectory because this particle passed through
the same tubes several times. The lotf algorithm is not
able to separate the distinct z-information from the indi-
vidual loops that compose the full helical trajectory.

alistic z-reconstruction. In this work, we choose to add the
point (x,y,z) = (0,0,0) to the list of values used for the z-
reconstruction, but only for tracks that do not curl within
the STT volume (i.e., tracks that have a clear inner-to-
outer or outer-to-inner direction). This assumes that the
origin of these tracks is close to the beam-target interac-
tion point, which is a fair assumption for stable particles
such as charged pions, protons, or antiprotons, that trans-
verse the STT, and short-lived particles, which decay al-
most instantly at the primary interaction point. However,
particles with a medium lifetime like ground state hyper-
ons can travel several tenths of centimeters before they
decay into stable particles. Here the assumption that the
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decay products come from the primary interaction point
is not true. In these cases, our approach is not optimal
and we plan to remove this assumption using the inner
Micro Vertex Detector [MVD, 26] that will allow us to
improve the accuracy of the z-reconstruction for both the
long-lived particles and their decay products.

Figure 11 shows the z-reconstruction for event A. The
mean z-error (reconstructed minus simulated values) for
the five tracks is 5.4 ± 2.5 cm which is relatively small
compared to the typical z-extent of the simulated tracks.

Figure 12 shows the z-reconstruction for event B. The
green, red, and cyan tracks have a mean z-error of 2.4,
0.1, and 2.1 cm, respectively. The trajectory of the low-
momentum secondary electron (brown) is only partially
recovered in the z plane, yielding an average z-error of
16.4 cm. This particle passed through the same tubes sev-
eral times, and lotf is not able to disentangle the individ-
ual loops that compose the full helical trajectory. Finally,
the purple track has a mean z-error of 92 cm, emphasiz-
ing that the z information is poorly reconstructed. This
is because the x-y reconstruction for this trajectory has
merged portions of two independent simulated tracks (see
Figure 9) such that the z-interpolation used coordinates
from two separate trajectories. Consequently, the final z-
reconstruction for this track is significantly different than
the ground truth. This example emphasizes that the per-
formance of the z-reconstruction crucially depends on the
accuracy of the x-y reconstruction performed in the first
place.

4 Performance

The purpose of lotf is to enable in-situ track recon-
struction with the STT. To meet the requirements of the
PANDA physics experiment and have the highest chance
of selecting events with rare or specific particle states,
an optimal track reconstruction algorithm must have (1)
large reconstruction efficiency (2) good reconstructed mo-
mentum resolution (1−2% [27]), and (3), high reconstruc-
tion rates to match the expected 160 Mhits/s and 1,600
Mhits/s generated in the STT for the high-resolution and
high-luminosity modes. In this work, we only assess the ef-
ficiency and reconstruction rate of the algorithm because
both are most important for online track reconstructions.
The reconstruction of the particles’ momenta, which is
performed after the track reconstruction and can be re-
fined using the information from other trackers, will be
investigated in a separate work.

We assess the performance of the lotf algorithm based
on 30,000 events generated using the FTF background
generator of the PandaRoot software5. We simulated
15,000 of these events using an antiproton beam momen-
tum (p̄beam) of 3 GeV/c, and 15,000 events using a beam
momentum of 15 GeV/c. We used two different beam-
momentum values to generate events with different track
multiplicities and particle momentum, p. The left panel of
Figure 13 shows the frequency spectrum of the number of

5 We used PandaRoot v12.0.1

tracks per event. Most of the events have a track multiplic-
ity between 1 and 4. On average, the simulation using a
15 GeV/c antiproton beam momentum has a larger track
multiplicity per event than that of the simulation with
p̄beam = 3 GeV/c. The total number of STT tracks gen-
erated is 56,190 and 68,052 for the low and high beam
momentum simulations, respectively. For the track analy-
sis, we do not consider tracks that have fewer than 6 STT
hits. The number of simulated tracks with at least 6 hits is
50,124 and 57,481 for the low and high beam momentum
simulations, respectively.

The right panel of Figure 13 shows the distribution of
particle momentum simulated for each case. As expected,
the distribution of particle momenta is more extended to-
wards large p when the antiproton beam momentum is
15 GeV/c. We note that the maximum p obtained with
the latter simulation is around 11 GeV/c, which is smaller
than p̄beam. This is because particles with larger momenta
have very small scattering angles such that they do not
cross the STT volume. Additionally, the momentum of
each particle also depends on the number of particles that
were formed during the interaction such that the distri-
bution of individual p is not immediately proportional to
p̄beam. Overall, the majority of primary tracks originate
from charged pions π+ and π− but the type of simulated
particles varies in the simulations such that we cover a
large spectrum of event types. Of the 30,000 events, 21,376
(≈71%) have overlapping tracks that are interesting for
the performance assessment.

In Section 4.1, we compare the performance of the
lotf algorithm to the recent track reconstruction ap-
proach presented in Babai et al. [14], and to the current
track reconstruction method, BarrelTrackFinder, im-
plemented in the PandaRoot software. In Section 4.2, we
assess the algorithm’s performance using data sets com-
posed of 4 successive events to assess the impact of event-
mixing. Finally, in Section 4.3, we scrutinize the timing
performance of lotf.

4.1 Track reconstruction performance

Here we focus on assessing the performance of loft in
assigning the correct nodes to the correct track (Sec-
tion 4.1.1), while simultaneously quantifying the corre-
sponding average z-reconstruction error (Section 4.1.2).

4.1.1 Comparison with other methods

In the context of cylindrical straw tube detectors, several
track reconstruction approaches have been developed over
the past years (e.g. [9, 10, 14, 17, 18, 28–30]). In this work,
we compare lotf to two of these approaches: the track
reconstruction technique from Babai et al. [14] (referred to
as Babai+20) and the BarrelTrackFinder algorithm
[30] implemented in PandaRoot [22].

The BarrelTrackFinder algorithm builds upon
conformal mapping [31]; circles in the x-y plane are trans-
formed into straight lines and hits are merged based on
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Fig. 13: Left: histogram representing the distribution of particle tracks per event in our experimental setup. A total of
30,000 events were simulated in the form of two times 15,000 events generated with an antiproton beam momentum
(p̄beam) of 3 and 15 GeV/c. Right: distribution of the particles’ momentum for the 50,124 and 57,481 particles that
reached the STT and have more than 5 STT hits in the simulations with a beam momentum of 3 GeV/c and 15 GeV/c,
respectively.

p̄beam = 3 GeV/c
Method Simulated Reconstructed Found F-Pure F-Impure P-Pure P-Impure Ghosts Clones

lotf

50,124

58,701 43,130 26,276 3,266 3,395 10,193 5,577 9,994
86.0% 60.9% 7.6% 7.9% 23.6% 12.9% 23.1%

Babai+20 58,868 40,338 16,849 1,973 9,071 12,445 6,670 11,860
80.5% 41.7% 4.9% 22.5% 30.9% 16.5% 29.4%

BarrelTrackFinder 57,869 39,727 8,802 0 16,372 14,553 7,672 10,470
79.3% 22.1% 0.0% 41.2% 36.7% 19.3% 26.4%

p̄beam = 15 GeV/c
Method Simulated Reconstructed Found F-Pure F-Impure P-Pure P-Impure Ghosts Clones

lotf

57,481

63,481 48,344 29,821 4,489 3,469 10,565 6,731 8,406
84.1% 61.7% 9.3% 7.1% 21.9% 13.9% 17.4%

Babai+20 62,405 44,439 18,357 2,529 10,518 13,035 8,075 9,891
77.3% 41.3% 5.7% 23.7% 29.3% 18.2% 22.2%

BarrelTrackFinder 81,579 51,269 8,599 0 20,646 22,024 16,397 13,913
89.2% 16.8% 0.0% 40.3% 42.9% 32.0% 27.1%

Table 1: A summary of the performance of the three track reconstruction methods: lotf (this work), Babai+20,
and BarrelTrackFinder. The top and bottom tables present the results of the track reconstruction for the low
and high beam momentum simulations, respectively. The column “Simulated" gives the number of simulated tracks
that have at least 6 hits in the STT, and the column “Reconstructed" shows the total number of reconstructed tracks
for each approach. The column “Found" displays the number of found tracks, defined as the sum of all reconstructed
tracks that are either F-Pure, F-Impure, P-Pure, or P-Impure (ranks 1 to 4, the description of these ranks is given
in the text). The percentage shown in italic is the ratio of the number of found tracks over the number of simulated
tracks. The columns “F-Pure" to “Clones" detail the number of reconstructed tracks in each rank. All the percentages
shown in these columns correspond to the ratio of the number of tracks in a given rank over the number of found
tracks (i.e., percentages from the columns “F-Pure" to “P-Impure" add up to 100).



14 Simon Gazagnes et al.: LOTF: a LOcal Track Finder algorithm for the PANDA STT

Full
y P

ure

 Full
y I

mpu
re

Part
ial

ly 
Pure

Part
ial

ly 
Im

pu
re

Gho
sts

Clon
es

103

104

105

N
um

be
r o

f t
ra

ck
s

86% 80% 79%

pbeam = 3 GeV/c
LOTF Babai+20 BarrelTrackFinder

Full
y P

ure

 Full
y I

mpu
re

Part
ial

ly 
Pure

Part
ial

ly 
Im

pu
re

Gho
sts

Clon
es

103

104

105

N
um

be
r o

f t
ra

ck
s

84% 77% 89%

pbeam = 15 GeV/c
LOTF Babai+20 BarrelTrackFinder

Fig. 14: Left: histogram presenting the distribution of reconstructed tracks in each rank (defined in the text) for the
15,000 events with p̄beam = 3 GeV/c (50,124 simulated tracks with more than 5 STT hits). Right: same but for the
15,000 events with p̄beam = 15 GeV/c (57,481 simulated tracks with more than 5 STT hits). The percentages shown
in each panel represent the ratio of the number of found tracks (i.e., being either Fully Pure, Fully Impure, Partially
Pure, or Partially Impure) over the number of simulated tracks for the three different methods. lotf has 86% and
84% of found tracks in the simulations with p̄beam = 3 GeV/c and p̄beam = 15 GeV/c, respectively. Additionally, it has
the largest number of Fully Pure tracks (perfectly reconstructed tracks) and the lowest number of Ghosts and Clones
(incorrect reconstructions) in both cases.

their connections in this new plane. The BarrelTrack-
Finder can perform a global track reconstruction includ-
ing information from several PANDA detectors. For a fair
comparison, we only use it locally by including the STT
information.

Babai+20 performs charged-particle trajectory re-
construction using attribute-space-connected morphologi-
cal filters [32]; the original data set is transformed into an
orientation-based space where hits are grouped into tracks
depending on which orientation subspace they belong to.
The Babai+20 approach is different from the local linear
fitting procedure used in lotf, yet, lotf builds upon sev-
eral techniques introduced by Babai+20 such as the con-
struction of a connected graph representing the STT geo-
metrical information and the use of virtual nodes. Hence,
the comparison to Babai+20 is relevant to explore the
performance improvements enabled by lotf.

To assess the track reconstruction performance, we
use the metric extended and described in [29] and imple-
mented in the PandaRoot software: the reconstructed
tracks are assigned a rank which characterizes the quality
of the reconstruction. These ranks are defined as follows:
Rank 1. Fully Pure track: the reconstructed track in-

cludes only the hits belonging to a single simulated
track, and all hits from the latter have been found. In
other words, the reconstructed track perfectly matches
a given simulated track.

Rank 2. Fully Impure track: the reconstructed track
holds all the hits from a simulated track, but also in-
cludes some impurities, i.e., hits belonging to other

simulated tracks. The fraction of impure hits must not
be larger than 30%.

Rank 3. Partially Pure track: the reconstructed track
holds at least 70% of all the hits from a simulated
track and only includes hits from that track (i.e., no
impurities allowed).

Rank 4. Partially Impure track: at least 70% of all the
hits in the reconstructed track originate from a single
simulated track. A Rank 4 track might include impu-
rities.

Rank 5. Ghost track: less than 70% of the hits in the
reconstructed track originate from the same simulated
track.

Rank 6. Clone track: if several reconstructed tracks
match with the same simulated track, only the re-
constructed track with the largest intersection set is
defined as the true reconstructed track, the other re-
constructions are clones.
All the reconstructed tracks can only belong to one of

these categories. Rank 1 is the best achievable rank, the
total number of tracks having a rank comprised between
1 and 4 are regarded as found tracks while the number of
Clones and Ghosts tracks (ranks 5 and 6) are regarded as
incorrect reconstructions. An optimal track reconstruction
algorithm should have the largest number of found tracks,
the lowest number of Clones and Ghosts, and the largest
number of Fully Pure tracks.

Using this metric, we compare the three algorithms
in reconstructing the 50,124 and 57,481 tracks simulated
with the FTF generator having at least 6 hits in the STT
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in the low and high beam momentum simulations, respec-
tively. Table 1 summarizes the number and percentages of
reconstructed tracks in each category for the three meth-
ods. The percentage of found track is derived with respect
to the total number of simulated tracks, and the percent-
ages of tracks in each rank are derived with respect to
the number of found tracks. Hence, for tracks that are
either Fully Pure, Fully Impure, Partially Pure, or Par-
tially Impure, these percentages represent the fraction of
found tracks in each category. For the Clones and Ghosts,
these percentages represent the fraction of incorrect tracks
reconstructed in addition to the found tracks.

Figure 14 shows these results in the form of his-
tograms for the two simulation data sets. lotf has the
largest percentage of found tracks in the simulation with
p̄beam = 3 GeV/c (86%), and the second largest in the
simulation with p̄beam = 15 GeV/c (84%, while the Bar-
relTrackFinder performs better with 89%). Interest-
ingly, for the BarrelTrackFinder approach, the frac-
tion of found tracks increases in the simulation with
p̄beam = 15 GeV/c compared to the simulation with
p̄beam = 3 GeV/c (89% against 79%), while lotf and
Babai+20 have the opposite behavior (a drop of 2 to
3% in the number of found tracks for both). We note
that BarrelTrackFinder has a factor of 1.5 to 2.5
times more Ghosts and Clones in the simulation with
p̄beam = 15 GeV/c than lotf and Babai+20, suggest-
ing that its better performance comes at a cost of having
a larger number of incorrect reconstructions.

Figure 14 also highlights that lotf holds the largest
number of Fully Pure tracks, a number 1.6 to 4 times
larger for lotf than for Babai+20 and BarrelTrack-
Finder, respectively. The fraction of these tracks in the
low (high) beam momentum simulation case is 60.9%
(61.7%) for lotf, 41.7% (41.3%) for Babai+20, and
22.1% (16.8%) for BarrelTrackFinder. Additionally,
lotf has the lowest amount of Ghosts and Clones of all
three methods for both data sets.

Finally, to process the 30,000 events using an Intel i9-
11900H CPU at 2.50 GHz, lotf took 44.3 s, Barrel-
TrackFinder 590.1 s, and Babai+20 41,301.4 s. An in-
depth analysis of the lotf processing time as a function
of the different reconstruction phases is presented in Sec-
tion 4.3.

4.1.2 z-reconstruction performance

In this section, we investigate the z-reconstruction per-
formance of lotf. We define the “z-error" as zrec− zsim,
where zrec and zsim are the reconstructed and simulated z-
coordinates of the particle hits, respectively. To compute
these values, we match, for each event, each simulated
track with the reconstructed track that has the largest in-
tersection set (larger number of matching hits). We then
compute the z-errors for each node in the intersection set.
lotf reconstructs the z-information using virtual nodes, a
technique introduced in Babai et al. [14]. Hence, we choose
to compare the z-reconstruction performance of both ap-
proaches. We do not include BarrelTrackFinder in

this comparison as there is no simple way to extract the re-
constructed z coordinates for the latter method. We leave
an in-depth analysis of the particles’ longitudinal momen-
tum reconstruction, including a comparison with recent
promising approaches (e.g., the PzFinder [10]), for fu-
ture work.
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Fig. 15: The distribution of the z-errors defined as the dif-
ference between the z-values of the reconstructed tracks
(zrec) and the z-values in the simulation (zsim). The blue
curve shows the distribution for the lotf algorithm and
the green curve shows that of Babai+20. The median and
associated 16th and 84th percentile errors is 1.80+9.79

−10.38 cm
for lotf and −15.6524.8129.90 cm for Babai+20. lotf im-
proves the median z-error by a factor of 8.7 compared to
Babai+20.

Figure 15 compares the distribution of the z-errors
for Babai+20 and lotf for all the reconstructed tracks
in the 30,000 events. As noted in Section 3.2, the z-
information can only be reconstructed if the particle
crossed at least two skewed layers in the STT. Among the
50,124 and 57,481 tracks from the low and high beam mo-
mentum simulations considered in this experiment, 43,583
and 48,712 fulfill this requirement, respectively, and are
used for assessing the z-reconstruction performance. The
Babai+20 yields a median z-error of −15.6524.8129.90 cm, a
value 8.7 times larger than the 1.80+9.79

−10.38 cm median z-
error obtained with lotf. Additionally, 68.3% of the re-
constructed z-values are within ±10 cm of the simulated
values for lotf, while this percentage is only 26.4% for
Babai+20.

The wings of the distribution of the z-errors with lotf
are wider than for Babai+20. The number of tracks
that have an average z-reconstruction error of more than
110 cm is 77 for lotf, but only one for Babai+20. The
absence of very large under- or over-estimation of the z-
coordinates for the Babai+20 can be explained by the
different approaches used by the authors to derive the vir-
tual node coordinates. As mentioned in Section 3.2, the
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virtual node z-coordinates lie in a limited range, typically
between 0 to ∼60 cm, such that the z-error distribution is
typically contained between -120 and +120 cm. While the
number of cases where lotf gives very large under- and
over-estimation of the z-coordinates is low (< 0.1% of all
tracks), these cases could be prohibitive during actual ex-
periments because they would lead to wrong estimates of
the particles’ longitudinal momentum component. Never-
theless, in practice, including information from the inner
detectors such as the MVD would enable significant im-
provements in the z-reconstruction performance, and this
aspect will be explored in future work.

Overall, these results highlight that lotf recovers the
z-coordinates with a relatively small error compared to
the overall STT longitudinal dimension (∼150 cm). This
aspect is promising for extracting an accurate estimate of
the particles’ longitudinal momentum component.

4.2 Towards high-luminosity experiments

With the foreseen interaction rates and the relatively slow
readout of the STT, one expects a large overlap in events
for the PANDA high-luminosity mode. In theory, given
the maximum drift time of the tubes (250 ns) and the
expected 20 MHz interaction rate (two successive events
separated on average by 50 ns), hits belonging to 4 to
5 independent events might overlap and make the recon-
struction process harder due to the larger number of over-
lapping tracks. In practice, taking into account that events
will be processed in bursts of no less than 2,000 ns and
the 400 ns beam gap, we expect that on average 32 events
will mix at 20 MHz (3.2 at 2 MHz).

The burst building scheme of PANDA implies that the
data flow from the STT detector will be grouped in a
time-based manner where track reconstruction algorithms
not only have to find the tracks in real-time but also
group these tracks into separate events. Therefore, any
in-situ track reconstruction algorithms must account for
the time-stamps of the hits as an additional dimension (see
[33] for a recent review on time-based reconstruction algo-
rithms). Performing track-reconstruction in a time-based
manner has a supplemental computational cost which can
be, when all detectors’ information occurring within 2,000
ns is processed, up to ≈ 1.5 times higher than the typical
event-based time reconstruction [11].

In this Section, we explore the impact of event mix-
ing on the lotf performance discussed in the previous
section. To mimic these effects, we use the 15,000 events
generated with an antiproton beam momentum of 3 GeV/c
and re-arrange them into 3,750 data sets of 4 events each.
Note that this is an idealization assuming that the data
collected is in an event-based manner, i.e., we do not con-
sider the hits time-stamps as lotf is not yet able to deal
with this 4th data-dimension. Yet, this setup enables a
fair initial investigation of the ability of our algorithm to
disentangle overlapping tracks in more complex data sets.

Figure 16 shows an example of track reconstruction
based on one data set encompassing hits from 4 succes-
sive events. As can be seen in this figure, the number of

overlapping tracks greatly increases in this setup, which
significantly impacts the overall quality of the track re-
construction.

To assess the performance of the lotf algorithm for
these more complex cases, we use the metric described in
Section 4.1.1. Figure 17 compares the distribution of track
ranks for the set of reconstructed tracks based on the orig-
inal simulation with a beam momentum of 3 GeV/c with
15,000 events and based on the new setup composed of
3,750 data sets of 4 events each. The percentage of found
tracks decreases from 86% to 73% for the setup mimicking
the impact of event-mixing. The number of Fully and Par-
tially Pure tracks decreases while the number of Fully and
Partially Impure tracks increase. This is expected since, as
more and more simulated tracks overlap, the reconstructed
tracks are more likely to include hits from several tracks.

The number of Clones remains fairly constant and we
note a significant increase in the number of Ghost tracks.
Ghost tracks are the consequence of the algorithm combin-
ing too many hits belonging to different simulated tracks.
These tracks have not been matched to any simulated
tracks, and emphasize the larger complexity of accurately
reconstructing individual tracks when the likeliness that
tracks overlap is higher. We note that accounting for the
hits time-stamps can greatly improve the efficiency of the
track reconstruction and significantly reduce the number
of Ghost tracks because it adds an additional constraint
when selecting a group of hits that might belong to the
same track (see e.g., [34]). Extending lotf implementa-
tion to handle the time dimension is one of our priorities.

Overall, a loss of performance is expected given the
more complex nature of the event-mixing case, yet the
algorithm still performs well in identifying a large frac-
tion of the tracks with decent accuracy. These results are
promising for future PANDA experiments operating at in-
teraction rates of up to 20 MHz.

4.3 Speed of the algorithm

Here, we assess the speed performance of the lotf algo-
rithm. We test our method using a laptop with a single
core of an Intel i9-11900H CPU at 2.50 GHz. We measure
the time and reconstruction rate (hits/s) for all events
and explore its evolution as a function of the number of
hits per data set processed. We consider the timings of
all the 33,750 events (30,000 single events plus 3,750 data
sets with 4 events concatenated) processed in this work.
The total number of tracks considered is 179,523, and each
track holds on average 21 hits. Over the 33,750 data sets
considered, only 424 (≈1%) have more than 500 STT hits.
These cases typically correspond to the data sets with
event-mixing used in Section 4.2. To have a complete as-
sessment of the computational footprint of our algorithm,
we decompose the total time of the track reconstruction
in several processing steps:

– “filling graph": the time needed to fill the STT graph
with the collected hits;

– “connect": the time needed to complete the connect
phase;
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Fig. 16: An example of data set used to test our algorithm in Section 4.2. We concatenated 4 successive events to
simulate the effects of event-mixing. Left: The simulated trajectories. Middle: The corresponding hits in the STT.
Right: The reconstruction using our algorithm.
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Fig. 17: Histogram presenting the distribution of recon-
structed tracks in each rank for the 50,124 simulated
tracks in the 3 GeV/c antiproton beam momentum sim-
ulation. The dark blue distribution shows the results for
the 15,000 events processed one by one (no event-mixing),
and the light blue distribution shows the results for the
setup where hits from 4 successive events are processed at
once (mimicking the effect of event-mixing). The percent-
age shown represents the fraction of reconstructed tracks
that are found (i.e., having ranks between 1 and 4, see
Section 4.1.1 for details).

– “fitting": the time needed to complete the fitting phase;
– “merging": the time needed to complete the merging

phase;
– “z-reconstruction": the time needed to perform the z-

reconstruction.

In all time measurements presented hereafter, we do not
consider input/output overheads. The top panel of Fig-
ure 18 shows the evolution of the average wall-clock time
for each processing step as a function of the number of
hits in the STT per data set.

The most time-consuming phase is the connect phase
where hits are connected one by one as a function of
their spatial and neighborhood relations. In particular,
this phase takes more than 50% of the total reconstruction
time for data sets with less than 300 hits. The contribu-
tion of the fitting phase is not significant for events with
less than 100 hits, but rapidly increases as the number of
hits per data becomes larger (∼30% of the total time for
nhits > 300). This is somewhat expected as data sets with
a larger number of STT hits likely have a larger number of
overlapping tracks as well, such that an increasing amount
of time must be spent during this phase to reconstruct
these complex tracks. Finally, we note that the merging,
filling graph, and z-reconstruction time are the least time-
consuming processing steps, mostly because they involve
very simple tasks.

In [14], the authors estimate the complexity of their
method to be O(nlog(n)). We find here that the total re-
construction time is fairly consistent with this function.
Additionally, we tried to empirically estimate the time de-
pendence of each processing step on the number of STT
hits by fitting a power law to the different curves observed
in Figure 18. We find all processing steps have a compu-
tational complexity close to O(n1.5), with the exception
of the filling graph whose complexity is O(n). We must
note that these values should only be considered as rough
estimates. Indeed, empirically estimating the asymptotic
behavior of our method for large n is complex because we
are dealing with modest values of n (< 1000).

The lower panel of Figure 18 which presents the evolu-
tion of the reconstruction rate as a function of the number
of STT hits shows similar trends. Interestingly, the recon-
struction rate of all processing steps remains fairly con-
stant when the number of hits considered is larger than
200. This scaling behavior is promising for future develop-
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Fig. 18: The evolution of the wall-clock time (top panel)
and reconstruction rate (in hits/s, bottom panel) as a
function of the number of STT hits in the 33,750 events
processed in this work. We decomposed the total time
based on the five major processing steps performed by
lotf (see details in Section 4.3). The connect phase takes
more than 50% of the total reconstruction time for data
sets with less than 300 hits. The fitting phase contribu-
tion is negligible for data sets with less than 100 STT hits,
but becomes more and more significant as the number of
hits increases, reaching 30% of the total time for data sets
with more than 300 hits. Overall, the average reconstruc-
tion rate is 67,849 hits/s (∼107 tracks/s assuming 21 hits
per track) and remains constant as the number of hits in
the STT increases.

ments that will aim to limit our method’s computational
footprint using an appropriate parallelization scheme (see
discussion hereafter).

The average processing time per data set is about
1.5 ms for the case where events are processed one by
one, and 2.3 ms for the 3,750 data sets where 4 events are
processed simultaneously. The average reconstruction rate
is 67,849 hits/s or ∼107 tracks/s assuming an average of
21 hits per track based on our experiment. This rate is
lower for data sets with a small number of hits (between

10,000 and 50,000 hits/s for 10 < nhits < 100), but reaches
a plateau at 124,345 hits/s for data sets with a number of
STT hits larger than 200. As a comparison, running with
the lowest and highest luminosities, PANDA is expected
to generate around 160 Mhits/s and 1,600 Mhits/s in the
STT for the high-resolution and high-luminosity modes,
respectively. Hence, an improvement of more than a fac-
tor of 3 and 4 orders of magnitude is required to perform
efficient online track reconstructions for both operation
modes.

We are confident that future developments will en-
able us to get closer to the requirements set by the ex-
pected interaction rates of PANDA. Currently, lotf does
not include any parallelization scheme. The most time-
consuming phase, the connect phase, involves simple and
separable series of tasks that can be easily distributed over
several processes. Parallelizing the fitting phase would be
slightly more complex as all operations are not entirely
separable, yet, decent gains should still be reachable by
distributing smaller operations (e.g., the selection of the
best track continuation based on the fit prediction). Addi-
tionally, a GPU-based (e.g. as in [18, 28]) or FPGA-based
implementation [17] could help to further increase the av-
erage reconstruction rate to meet the requirements for the
PANDA in-situ track reconstruction. The latter approach
is particularly promising as the authors report an improve-
ment of up to 3 orders of magnitude compared to classi-
cal CPU-based approaches. Alternatively, since each event
can be reconstructed independently, one could employ this
method on a machine with 100 (1,000) cores and meet the
requirements set by the foreseen interaction rates of the
high-resolution (high-luminosity) operational mode.

5 Summary

Designing fast and efficient track reconstruction algo-
rithms is crucial to meet the requirements of modern par-
ticle detectors operating at very high interaction rates. In
this work, we presented the LOcal Track Finder (lotf)
algorithm that performs fast track reconstructions using
the data collected by the Straw Tube Tracker embedded
in the upcoming PANDA experiment. The functioning of
our algorithm uses a local approach that connects single
isolated hits to form tracks. Further, it builds upon a para-
metric linear fitting method to refine the tracks in regions
where several particle trajectories overlap. Additionally,
we utilize the virtual nodes system introduced in Babai et
al. [13, 14] to perform the z-reconstruction. Our approach
does not depend on the drift time of the tubes and only
requires the STT geometry, including the neighborhood
relation of all tubes (similar to [11, 12, 14]).

In Section 4.1, we generated 30,000 events (107,605
particle trajectories with at least 6 STT hits) using
an antiproton beam momentum of 3 and 15 GeV/c to
assess the performance of our algorithm. We compare
our method to the method of Babai et al. [14] and to
the method implemented in the PandaRoot software
(BarrelTrackFinder) using the standard PANDA
track quality assessment metric. We showed that, in the



Simon Gazagnes et al.: LOTF: a LOcal Track Finder algorithm for the PANDA STT 19

low and high beam momentum simulations, lotf has (1)
respectively 86% and 84% of found tracks (i.e., tracks
having a rank between 1 to 4), (2) the largest number
of Fully Pure tracks (rank 1, perfect reconstructions), (3)
the lowest amount of Ghosts and Clones (ranks 5 and
6, incorrect reconstructions), and (4), is faster by a fac-
tor of ∼13 and 940 compared to BarrelTrackFinder
and Babai+20, respectively. Additionally, we emphasized
that our z-reconstruction approach leads to an average z-
error of 1.80+9.79

−10.38 cm for all tracks which is promising for
extracting the particles’ longitudinal momentum compo-
nent.

In Section 4.2, we mimicked the effects of event-mixing
to further explore the foreseen performance of our algo-
rithm for experiments using the PANDA high-luminosity
mode (20 MHz interaction rate, involving a significant
overlap between events). Using the simulation with 15,000
events simulation generated with an antiproton beam mo-
mentum of 3 GeV/c, we created 3,750 data sets combin-
ing each of the STT hits from 4 successive events. We
showed that the percentage of found tracks decreases (86%
to 73%) in the setup mimicking event-mixing. Yet, lotf
still performs well in identifying a large fraction of the
tracks with a decent accuracy according to the quality as-
sessment metric used in this work, which is promising for
dealing with such complex event-mixing data sets.

In Section 4.3, we scrutinized the time and processing
rate of our method. We obtained an average of 1.5 ms
per data set for data sets composed of a single event and
2.3 ms per data set for data sets composed of 4 successive
events. The average processing rate is about 68,000 hits/s
for both cases. The current efficiency and raw computa-
tional speed (no parallelization included) are promising in
enabling a fast in-situ event selection with PANDA. To
make this method a robust state-of-the-art algorithm for
PANDA, we are planning several improvements. We aim
at decreasing the current processing time per event by 2
orders of magnitudes by optimizing and parallelizing the
phases having a large computational footprint (e.g., the
connect and fitting phases) using GPUs. Then, in prac-
tice, since each event can be reconstructed independently,
another improvement of two and three orders of magni-
tude should be achievable by employing this method on a
machine with 100 (1,000) cores, and therefore, enable an
efficient in-situ event selection for experiments working
with the PANDA high-resolution (high-luminosity) mode.

Finally, in the future, we will aim to include the data
collected by the MVD [26] and EMC [35] detectors in the
reconstruction to provide further constraints on the parti-
cle trajectories inside and outside of the STT volume. This
effort will enable us to improve the efficiency of our algo-
rithm in identifying and reconstructing overlapping parti-
cle trajectories. However, we must ensure that these im-
provements do not significantly impact the current speed
of the reconstruction process.
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A Algorithms

In this section, we present the code of the algorithms used
in the present work.

A.1 The connect phase

Algorithm 1 Pseudo-code of the connect phase
1: procedure FindTracklets(STTgraph)
2: hit_queue← FindStartingHits(STTgraph)
3: for all hit in hit_queue do
4: CurHit← hit
5: PathCandidate Cand← init(CurHit)
6: CurDir ← 0
7: Cond← true
8: neighbors← FindNeighbors(CurHit)
9: while Cond do
10: if neighbors.size() = 1 then
11: Cand.insert(neighbors[0])
12: CurDir ← FindDir(CurHit, neighbors[0])
13: CurHit← neighbors[0]
14: neighbors← FindNeighbors(CurHit)
15: else if size(neighbors) > 1 then
16: SortPerLayer(neighbors, upL, downL, sameL)

17: if (upL.size() > 0 and downL.size() > 0
and (sameL.size() > 0) or CurDir = SAME)
then

18: Cond← false
19: else if (size(upL) > 0 and downL.size() > 0

then
20: if CurDir = UP then
21: neighbors.remove(downL)
22: else if CurDir = DOWN then
23: neighbors.remove(upL)
24: end if
25: if Cond = true and AreCon-

nected(neighbors) then
26: Cand.insert(neighbors)
27: CurDir ← FindDir(CurHit, neighbors)
28: neighbors← FindNeighbors(neighbors)
29: CurHit← neighbors[−1]
30: end if
31: end if
32: else
33: Cond← false
34: end if
35: end while
36: Cand.neighbors.insert(neighbors)
37: if OnLayerLimit(Cand.headNode) and OnLay-

erLimit(Cand.tailNode) and neighbors.size() = 0
then

38: Cand.status← finished
39: else
40: Cand.status← ongoing
41: end if
42: end for
43: end procedure
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In Section 3.1.1, we briefly presented the connect phase.
In this appendix, we present and detail the corresponding
pseudocode in Algorithm 1. The function FindStart-
ingHits looks for the edges of the track by extracting
all nodes that belong to the inner- or outermost layer of
the STT (the “limit layers"). Every time we find such a
node, we define a new track candidate using the structure
PathCandidate and set the current node as the tail of the
track. Neighbors of this node are extracted and stored in
the neighbors vector. We use a variable CurDir to deter-
mine the current orientation of the track, based on the
layer of the nodes that have been added so far (layer 0 be-
ing the closest to the beam-target interaction point). The
CurDir variable is either UP, DOWN, or SAME depend-
ing on whether the layer index difference of the two most
recently added nodes is 1, −1, or 0, respectively.

We connect neighboring activated tubes iteratively to
a track using a loop that successively looks for the next
available neighbors around the most recently added node.
If we have a single activated tube, it is automatically
connected to the track. Otherwise, we use the procedure
SortPerLayer to sort all the available neighboring nodes
based on their layer index. We then add only neighbors
that are consistent with the track direction and are adja-
cent to each other (function AreConnected). If the layer
configuration of all neighbors is too complex (i.e. we have
neighbors on all different layers and the track direction is
unclear), we pause the track reconstruction and store the
current list of neighbors. Then, the track reconstruction is
resumed during the fitting phase to resolve these complex
cases.

The track reconstruction also stops when we have no
more neighboring nodes in sight. For the latter case, we
test whether the current track looks complete by testing
if its tail node (the first node added) and head node (the
last node added) are on layer limits. This criterion assumes
that a track transiting through the entire STT volume or
circling in it is finished. If a track has no more neighboring
nodes but one of its extremities ends in the middle of the
STT, we flag it as ongoing for later investigation. Indeed,
there might exist another track candidate, not directly
neighboring, that it can be connected to.

A.2 The fitting phase

Algorithm 2 details the steps described in Section 3.1.2.
For all the tracks flagged as ongoing, we use a local fitting
approach based on a system of anchor nodes to look for
the next best node to add to the track. The function Ex-
tractLast3Anc recovers the last three anchors in the
track that are used to fit the parametric equation system
for the x and y coordinates (function FitXYLine). The
variables xPred and yPred are the predicted coordinates
of the next nodes according to the parametric equations.
For all the neighboring nodes, we compute the distance
(labeled hitDist) between the node position and the pre-
dicted coordinates of the next hit using the function Com-
puteDist. Additionally, we use the anchors to determine
the track direction (CurDir) which is derived based on

Algorithm 2 Pseudo-code of the fitting phase
1: procedure FitNextHit(STTgraph, PathCandidate

tracklets)
2: for all track in tracklets with track.status = ongoing

do
3: neighbors← track.neighbors
4: DistDir ← New 2-D tupple array
5: Cond← true
6: while Cond do
7: for all hit in neighbors do
8: Anchors← CurTrack.ExtractLast3Anc()
9: xInterp, yInterp← FitXYLine(Anchors)
10: CurDir ← FindDir(Anchors)
11: xPred, yPred← HitPos(xInterp, yInterp)
12: hitDist← ComputeDist(hit, xPred, yPred)
13: hitDir ← CompareDir(CurDir, hit)
14: DistDir.insert(hitDist, hitDir)
15: end for
16: bestHit← FindBestHit(DistDir)
17: if bestHit = −1 then
18: Cond← false
19: else
20: hitTrack ← FindTrackOf(bestHit)
21: if hitTrack 6= −1 and

CheckMerging(track, hitTrack) = 1 then
22: AddTrackForMerging(track, hitTrack)
23: Cond← False
24: else
25: track.insert(bestHit)
26: neighbors ←

FindNextNeighbors(bestHit)
27: end if
28: end if
29: if neighbors.size() = 0 then
30: Cond← false
31: end if
32: end while
33: if LayerLimit(track.headNode) and Layer-

Limit(track.tailNode) then
34: track.status← finished
35: end if
36: end for
37: end procedure

the layers the anchors belong to (similar to the method
used during the connect phase). Once we tested all the
hits, we look for the best possible fit in the list by taking
the node with the minimal distance while having a consis-
tent direction with respect to the CurDir variable. This
is done using the function FindBestHit. As detailed in
Section 3.1.2, we set a criterion on the maximum distance
acceptable such that the function returns −1 if no neigh-
boring nodes are sufficiently close to the predicted node
position.

When a good node is found, if it already belongs to
another track, we check whether these tracks should be
merged using the function CheckMerging which com-
putes the intersection angle between two tracks. If the
CheckMerging test is successful (see Section 3.1.2), the
fitting phase for this particular track is stopped, and both
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tracks are flagged as ToMerge such that no more hits are
added.

On the other hand, if CheckMerging returns false,
or if the best node found does not belong to any track,
we connect this node to the current track. We repeat the
steps above updating the list of neighbors to include the
neighbors of the most recently added tube. The algorithm
continues until the current track is flagged for merging, or
until the list of next neighbors is empty.

A.3 z-reconstruction

In this section, we detail the pseudo-code for the proce-
dures used for the z-reconstruction in Algorithm 3. The
CorrectSkewedXY procedure is the function used to
estimate the exact hit position along the tube (see Fig-
ure 10). The procedure InterpolateZCoord is the func-
tion used at the end of the track reconstruction to fit
a parametric line in the z-direction and re-estimate con-
sistently the z coordinates of all the nodes in the track.
The functioning of the two procedures is detailed in Sec-
tion 3.2.

Algorithm 3 Pseudo-code of the z-reconstruction step
1: procedure CorrectSkewedXY(STTgraph, PathCandi-

date track, GridNode hitToInsert)
2: if hitToInsert is a virtual node then
3: GridNode lastV irt← ExtractVirt(track)
4: xDir ← hitToInsert.x− lastV irt.x
5: yDir ← hitToInsert.y − lastV irt.y
6: for all anchors in track added after lastV irt do
7: anchor.x, anchor.y ← Intersect(xDir, yDir)
8: anchor.z ← EstimateZCoord(anchor)
9: end for
10: end if
11: end procedure

12: procedure InterpolateZCoord(PathCandidate
track)

13: zArray ← ExtractAllAnchorsWithZCoord(track)

14: if track.Dir = InnerToOuter then
15: zArray.insertAtF irstPos(0)
16: else if track.Dir = OuterToInner then
17: zArray.insertAtLastPos(0)
18: end if
19: zInterp← FitZLine(zArray)
20: for all nodes in track do
21: nodes.z ← ComputeZFromInterp(zInterp)
22: end for
23: end procedure
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