001018169 001__ 1018169
001018169 005__ 20250701125844.0
001018169 0247_ $$2doi$$a10.22323/1.433.0007
001018169 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04609
001018169 037__ $$aFZJ-2023-04609
001018169 041__ $$aEnglish
001018169 1001_ $$0P:(DE-Juel1)191046$$aWestphal, Moritz$$b0$$eCorresponding author
001018169 1112_ $$a19th Workshop on Polarized Sources, Targets and Polarimetry$$cMainz$$d2022-09-26 - 2022-09-30$$gPSTP22$$wGermany
001018169 245__ $$aMeasurement of the occupation number of metastable atoms in the hyperfine-substate β$_3$ in an atomic hydrogen beam
001018169 260__ $$bSissa Medialab Trieste, Italy$$c2023
001018169 300__ $$a6
001018169 3367_ $$2ORCID$$aCONFERENCE_PAPER
001018169 3367_ $$033$$2EndNote$$aConference Paper
001018169 3367_ $$2BibTeX$$aINPROCEEDINGS
001018169 3367_ $$2DRIVER$$aconferenceObject
001018169 3367_ $$2DataCite$$aOutput Types/Conference Paper
001018169 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1700471940_21686
001018169 4900_ $$v433
001018169 520__ $$aAfter its discovery in 1947 by Willis Eugene Lamb and Robert C. Retherford the Lamb shift was used to create Lamb shift polarimeter to separate the 2S${_{1/2}}$ α1 and α2 hyperfinesubstates of hydrogen as well as the α3 substate of deuterium. But for a new project at theTechnical University of Munich, investigation of the bound-beta decay of a neutron into a hydrogen atom anda neutrino, a Lamb shift polarimeter is needed that is also capable of separating the β3substate of hydrogen. Unfortunately, our first attempt to use a Sona transition unit toexchange the occupation numbers between α1 and β3 failed, because of the unexpectedcomplexity of the transitions in this unit [1]. The second idea of using a new kind of spinfilterwhich uses two radio frequencies to separate all four hyperfine substates of hydrogen alsofailed.Our third attempt is now to build a transition unit that can induce magnetic dipole transitionsbetween α2 and β3 as well as between α2 and β4 (π transitions, i.e. an exchange of the occupation numbers of these states). This is a similartransition to what is used in atomic beam sources, in this case not for ground state atoms but for metastableatoms, which requires a much lower radio frequency. Another difference of this new idea isthe smaller interaction time of the atoms with the photons inside the transition unit due totheir much higher velocity of roughly 2⋅10$^5$ m/s compared to velocities of about 10$^3$ m/s in an atomic beam source.
001018169 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0
001018169 588__ $$aDataset connected to CrossRef Conference
001018169 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x0
001018169 65017 $$0V:(DE-MLZ)GC-2001-2016$$2V:(DE-HGF)$$aNuclei and Particles$$x0
001018169 7001_ $$0P:(DE-Juel1)131141$$aEngels, Ralf W.$$b1$$ufzj
001018169 7001_ $$0P:(DE-Juel1)192187$$aFaatz, Nicolas$$b2$$ufzj
001018169 7001_ $$0P:(DE-Juel1)178627$$aKannis, Chrysovalantis$$b3$$ufzj
001018169 7001_ $$0P:(DE-Juel1)165637$$aKlimczok, Berthold$$b4$$ufzj
001018169 7001_ $$0P:(DE-HGF)0$$aMandiwal, Aditya$$b5
001018169 7001_ $$0P:(DE-Juel1)159552$$aMaubach, Maike$$b6$$ufzj
001018169 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b7$$ufzj
001018169 773__ $$a10.22323/1.433.0007$$p007$$v433
001018169 8564_ $$uhttps://juser.fz-juelich.de/record/1018169/files/PSTP2022_007.pdf$$yOpenAccess
001018169 909CO $$ooai:juser.fz-juelich.de:1018169$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001018169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131141$$aForschungszentrum Jülich$$b1$$kFZJ
001018169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192187$$aForschungszentrum Jülich$$b2$$kFZJ
001018169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178627$$aForschungszentrum Jülich$$b3$$kFZJ
001018169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165637$$aForschungszentrum Jülich$$b4$$kFZJ
001018169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159552$$aForschungszentrum Jülich$$b6$$kFZJ
001018169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b7$$kFZJ
001018169 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0
001018169 9141_ $$y2023
001018169 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018169 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001018169 920__ $$lyes
001018169 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
001018169 9201_ $$0I:(DE-Juel1)IKP-TA-20111104$$kIKP-TA$$lIKP- Technische und Administrative Infrastruktur$$x1
001018169 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x2
001018169 9801_ $$aFullTexts
001018169 980__ $$acontrib
001018169 980__ $$aVDB
001018169 980__ $$aUNRESTRICTED
001018169 980__ $$aI:(DE-Juel1)IKP-2-20111104
001018169 980__ $$aI:(DE-Juel1)IKP-TA-20111104
001018169 980__ $$aI:(DE-Juel1)ZEA-1-20090406
001018169 981__ $$aI:(DE-Juel1)ITE-20250108