001     1018221
005     20240625095032.0
024 7 _ |a 10.34734/FZJ-2023-04617
|2 datacite_doi
037 _ _ |a FZJ-2023-04617
088 _ _ |a 4443
|2 Other
100 1 _ |a Symeonidou, Stefania
|0 P:(DE-Juel1)200182
|b 0
|e Corresponding author
245 _ _ |a The Variational Quantum Eigensolver in Quantum Chemistry with PennyLane
260 _ _ |a Jülich
|c 2023
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a 68
336 7 _ |a report
|2 DRIVER
336 7 _ |a REPORT
|2 ORCID
336 7 _ |a Report
|0 10
|2 EndNote
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a Output Types/Report
|2 DataCite
336 7 _ |a Report
|b report
|m report
|0 PUB:(DE-HGF)29
|s 1700549931_7630
|2 PUB:(DE-HGF)
336 7 _ |a TECHREPORT
|2 BibTeX
490 0 _ |a Berichte des Forschungszentrums Jülich
|v 4443
520 _ _ |a This thesis explores quantum chemistry using the Variational Quantum Eigensolver (VQE), developed with the help of PennyLane’s quantum chemistry library. Our focus was on exploring molecular structures and energy landscapes. With an adaptive VQE implementation, we generated approximate multi-electron wave functions by optimizing a quantum circuit on a simulator. We started from a Hartree-Fock state and applied the UCCSD (Unitary Coupled Cluster Singles and Doubles) Ansatz to entangle electrons and lower the Hamiltonian’s expectation value. The journey began with H2, where the VQE accurately predicted its equilibrium distance and energy. We then extended our analysis to more complex molecules like LiH, BeH2, and H2O, successfully determining their equilibrium geometries and energies, which match existing literature. However, we discovered anomalies in the energy surfaces of BeH2 and H2O at larger internuclear distances, leading us to question the choice of initial states for these scenarios. In summary, this work demonstrated the VQE’s potential for accurate molecular simulations. While it excels in capturing ground states for various molecules, challenges remain for large internuclear distances. This sheds light on the evolving landscape of quantum technologies applied to understanding molecular systems.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/1018221/files/J%C3%BCl_4443.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018221
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
920 _ _ |l yes
980 1 _ |a FullTexts
980 _ _ |a report
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21