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Abstract

This thesis explores quantum chemistry using the Variational Quantum Eigen-
solver (VQE), developed with the help of PennyLane’s quantum chemistry library.
Our focus was on exploring molecular structures and energy landscapes.

With an adaptive VQE implementation, we generated approximate multi-electron
wave functions by optimizing a quantum circuit on a simulator. We started from
a Hartree-Fock state and applied the UCCSD (Unitary Coupled Cluster Singles
and Doubles) Ansatz to entangle electrons and lower the Hamiltonian’s expectation
value.

The journey began with H2, where the VQE accurately predicted its equilibrium
distance and energy. We then extended our analysis to more complex molecules like
LiH, BeH2, and H2O, successfully determining their equilibrium geometries and
energies, which match existing literature.

However, we discovered anomalies in the energy surfaces of BeH2 and H2O at
larger internuclear distances, leading us to question the choice of initial states for
these scenarios.

In summary, this work demonstrated the VQE’s potential for accurate molec-
ular simulations. While it excels in capturing ground states for various molecules,
challenges remain for large internuclear distances. This sheds light on the evolving
landscape of quantum technologies applied to understanding molecular systems.
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1 Introduction

In the modern times, computers play an essential role in nearly every facet of our
lives, from powering our smartphones to driving scientific discoveries. Despite the ex-
ponential growth in computational power, certain complex problems have remained
intractable due to the limitations of classical computers. This stagnation in progress
has motivated the quest for innovative computational methods capable of addressing
these challenges. One promising approach is the development of quantum comput-
ers, which utilize the principles of quantum mechanics to perform computations that
were previously deemed impossible.

Quantum computation is based on the idea of using quantum mechanics to per-
form computations, instead of classical physics. This means that instead of using
bits encoded as 0 and 1, we can employ qubits, which can exist in a superposition of
these two states. As a result, our algorithms become faster and more space-efficient.
In fact, an ordinary computer can be used to simulate a quantum computer, but this
simulation is impossible to be performed efficiently [1]. Thus, quantum computers
can be expected to outperform classical computers on specific classes of problems.
This kind of computer was first proposed by Richard Feynman in 1982 [2] and is
one of the big challenges facing 21st century science and technology.

In the last decades major progress has been achieved in the area of experimental
implementation of Quantum Computers. Various few qubit processors and classical
simulators of quantum processors are now accessible through the cloud. Further-
more, quantum software platforms are evolving rapidly, with offerings such as IBM’s
Qiskit, Google’s Cirq, and Xanadu’s PennyLane now readily accessible.

A highly promising application of quantum computation is quantum chemistry.
Quantum computers can simulate properties of molecules more efficiently and with
fewer approximations than classical computers. This is of great interest for many in-
dustrial processes. Libraries like PennyLane provide useful functionalities for quan-
tum differentiable programming, combining insights from quantum computing, com-
putational chemistry, and machine learning [3].

This thesis will commence with the theoretical foundations of quantum chem-
istry, such as the Hartree-Fock method. Ground state calculations for small molecules
will be performed, and the optimal geometries of these molecules will be evaluated
to demonstrate how useful quantum computation can be for quantum chemistry.
To achieve this, we will use PennyLanes library for quantum chemistry to construct
the Variational Quantum Eigensolver (VQE), a quantum-classical algorithm which
makes use of machine learning techniques to optimize given input parameters and
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thus enhances approximation precision compared to the Hartree-Fock method. Our
primary emphasis will be on theory, and we will conduct the simulations employing
PennyLanes’s integrated simulator. Thus, we are able to simulate small molecules
up to 12 qubits.
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2 Theory

2.1 The Hartree-Fock Theory

Central to quantum chemistry is the Hartree-Fock (HF) theory. It is an approxi-
mation method used to derive a simplified version of the Schrödinger equation for
molecules. This allows for the calculation of the wave functions, so called orbitals,
for the electrons within the system. We will first present the theory in a general
manner and then illustrate it using the example of H2. The goal of this section is to
introduce, how a first approximation of the molecular orbitals and the ground state
energy of a molecule can be calculated. This first approximation can then be used
to compute the qubit Hamiltonian and set initial values for the VQE algorithm that
we intend to utilize.

When examining a quantum system, our focus lies in solving the time-dependent
Schrödinger equation, which describes the underlying physics:

Ĥ(r⃗, t)ψ(r⃗, t) = ih̄
∂

∂t
ψ(r⃗, t) (2.1)

It is applicable on isolated, non-relativistic systems, as the molecules in Chapter
4 are. When the Hamiltonian is time-independent equation 2.1 can be reduced
to the time-independent Schrödinger equation by making the Ansatz ψ(r⃗, t) =∑

k Ckψk(r⃗)e
−iEkt/h̄, where ψk are the so called stationary states:

Ĥ(r⃗)ψk(r⃗) = Ekψk(r⃗) (2.2)

Equation 2.2 is an eigenvalue problem, which is much easier to solve, than the time-
dependent Schrödinger equation (eq. 2.1). The Hamiltonian Ĥ varies based on the
underlying system.

For an molecule equation 2.2 depends on the coordinates of all electrons and all
nuclei. The Hamiltonian, consisting of kinetic and potential terms, would take the
form:

Ĥ = T̂Nc + T̂e + V̂NcNc + V̂Nce + V̂ee

= −
∑
A

h̄2

2mA

∇2
A︸ ︷︷ ︸

T̂Nc

−
∑
i

h̄2

2mi

∇2
i︸ ︷︷ ︸

T̂e

+
∑
A<B

ZAZBe
2

4πϵ0|R⃗A − R⃗B|︸ ︷︷ ︸
V̂NcNc

−
∑
iA

ZAe
2

4πϵ0|R⃗A − r⃗i|︸ ︷︷ ︸
V̂Nce

+
∑
i<j

e2

4πϵ0|r⃗j − r⃗i|︸ ︷︷ ︸
V̂ee

(2.3)
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2.1. THE HARTREE-FOCK THEORY

where i,j denote electrons and A,B nuclei (indexes: Nc=nuclei, e=electron). h̄ de-
notes the reduced Planck constant, e the electronic charge, m the electron and
nuclear mass, and ϵ0 the vacuum permittivity. Furthermore r⃗i is the position of
an electron and R⃗A is that of a nucleus, ZA is the nuclear charge number [4]. The
terms in the hamiltonian represent the kinetic energy of the nuclei (T̂Nc) and elec-
trons (T̂e), followed by the potential energy associated with nuclear-nuclear (V̂NcNc),
nuclear-electron (V̂Nce), and electron-electron interactions (V̂ee).

Thus, to solve equation 2.2 for an arbitrary molecule (or multi-electron system),
a large number of variables has to be taken into account. Solutions are known
for single-electron systems like the hydrogen atom, but no analytic solutions are
known for multi-electron systems [5]. To simplify and solve the problem, four major
approximations need to be made:

1. Born-Oppenheimer approximation

2. Hartree-Fock/mean-field approximation

3. LCAO-MO (LinearCombination of AtomicOrbitals-MolecularOrbital) Ansatz

4. approximation of Atomic Orbitals (AO’s) by finite basis sets

In the subsequent sections, these approximations will be introduced step-by-step un-
til a numerically solvable equation, known as the Roothaan-Hall equation, is reached.

Example 2.1.1 H2

So let us write down the problem we want to solve for H2 (eq. 2.2), and reduce it
step-by step through the next sections. The H2 molecule consist of two nuclei, each
with one electron, and nuclear charge number ZH = 1. Thus the time-independent
Schrödinger equation depends on the positions of the two nuclei and the two elec-
trons:

Ĥψk(r⃗1, r⃗2, R⃗1, R⃗2) = Ekψk(r⃗1, r⃗2, R⃗1, R⃗2) (2.4)

with the Hamiltonian

Ĥ(r⃗1, r⃗2, R⃗1, R⃗2) = T̂Nc + T̂e + V̂NcNc + V̂Nce + V̂ee

= − h̄2

2mH

∇2
H(1) −

h̄2

2mH

∇2
H(2) −

h̄2

2me

∇2
1 −

h̄2

2me

∇2
2

+
ZHZHe

2

4πϵ0|R⃗2 − R⃗1|

− ZHe
2

4πϵ0|R⃗1 − r⃗1|
− ZHe

2

4πϵ0|R⃗1 − r⃗2|
− ZHe

2

4πϵ0|R⃗2 − r⃗1|
− ZHe

2

4πϵ0|R⃗2 − r⃗2|

+
e2

4πϵ0|r⃗2 − r⃗1|
(2.5)

Taking a look at this problem, it is obvious why analytic solutions cannot be derived
for molecules. Even the simplest molecule (H2) requires 12 variables.
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2.1. THE HARTREE-FOCK THEORY

2.1.1 Born-Oppenheimer Approximation

The first approximation needed is the Born-Oppenheimer appoximation. Within
the Born-Oppenheimer approximation, we treat the nuclear and electronic variables
separately. This is done by making the Ansatz ψk(r⃗, R⃗) = ϕe,k(r⃗; R⃗)ϕN,k(R⃗). Here r⃗

and R⃗ stand for all electronic and all nuclear positions, respectively. The molecular
orbitals ϕe,k may depend on the nuclear positions, but only in a constant matter.
This corresponds to fixing nuclear coordinates and neglecting the nuclear motion in
comparison to the electronic motion. It is a legitimate assumtion, as the mass of
electrons is way smaller than the mass of nuclei (me << mNc).

By freezing the nuclei, the kinetic nuclear term in the Hamiltonian vanishes and
we obtain the electronic structure problem in first quantization:

Ĥeϕe,k(r⃗; R⃗) = Ee,k(R⃗)ϕe,k(r⃗; R⃗) (2.6)

with

Ĥe(r⃗; R⃗) = T̂e + V̂NcNc + V̂Nce + V̂ee (2.7)

Ĥe is referred to as the electronic Hamiltonian, and depends on the kinetic energy
of the electrons (T̂e), the Coulomb interaction between the nuclei and electrons
(V̂Nce), and electron-electron interactions (V̂ee). Here the term of nuclear coulomb
interaction V̂NcNc represents a constant, as it only depends on nuclear coordinates.
The ϕe,k represent the molecular orbitals. Ee,k(R⃗) is the potential energy surface [6].

Once the electronic eigenstates are determined, it is possible to revisit and con-
sider the nuclei in order to derive the vibrational and rotational states:

ĤNc = T̂Nc + Ee,k(R⃗) ĤNcϕNc(R⃗) = ENcϕNc(R⃗) (2.8)

In this context, ĤNc represents the nuclear Hamiltonian, which includes both the
nuclear kinetic energy and the electronic energy eigenstates.

Since we will solely focus on the electronic eigenstates, we won’t delve further
into the theory of vibrational and rotational states. Furthermore, for the sake of
simplicity, we will omit the index ”e” and ”k” in the context of the electronic struc-
ture problem from this point onward.

Example 2.1.2 H2

Equation 2.4 reduces to the electronic structure problem:

Ĥeϕe,k(r⃗1, r⃗2; R⃗1, R⃗2) = Ee,k(R⃗1, R⃗2)ϕe,k(r⃗1, r⃗2; R⃗1, R⃗2) (2.9)
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2.1. THE HARTREE-FOCK THEORY

with the Hamiltonian

Ĥe(r⃗1, r⃗2; R⃗1, R⃗2) = T̂e + V̂NcNc + V̂Nce + V̂ee

= − h̄2

2me

∇2
1 −

h̄2

2me

∇2
2

+
ZHZHe

2

4πϵ0|R⃗2 − R⃗1|

− ZHe
2

4πϵ0|R⃗1 − r⃗1|
− ZHe

2

4πϵ0|R⃗1 − r⃗2|
− ZHe

2

4πϵ0|R⃗2 − r⃗1|
− ZHe

2

4πϵ0|R⃗2 − r⃗2|

+
e2

4πϵ0|r⃗2 − r⃗1|
(2.10)
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2.1. THE HARTREE-FOCK THEORY

2.1.2 Hartree-Fock (mean-field) approximation

Considering the Born-Oppenheimer approximation, the electronic structure prob-
lem remains intractable. Our primary challenge arises from the electron-electron
interaction term (Vee).

To simplify the problem, we must also separate variables that describe individual
electrons (one-electron picture). In doing so, we are still required to satisfy the
antisymmetry condition for fermions as mandated by the Pauli exclusion principle.
An approximate wavefunction (Φ ≈ ϕe,k) for many-electron systems is formulated by
taking the antisymmetrized product of functions that describe individual electrons

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1 (x1) ϕ2 (x1) · · · ϕN (x1)
ϕ1 (x2) ϕ2 (x2) · · · ϕN (x2)

...
...

. . .
...

ϕ1 (xN) ϕ2 (xN) · · · ϕN (xN)

∣∣∣∣∣∣∣∣∣ (2.11)

the so called Slater determinant [4]. 1√
N !

is a normalization constant where N is the
number of electrons in the system. In the Hartree–Fock theory only a single Slater
determinant is used as approximation to the electronic multi-particle wave func-
tion ϕe,k. In more accurate theories, so called Post-Hartree-Fock methods, a linear
combination of Slater determinants is used. We will come back to that in section 2.4.

Approximating the electronic multi-electron wave function with a single Slater
determinant means, that Coulomb correlations between electrons are neglected.
Nevertheless Fermi correlations are considered, as described below [7]. This means,
that within the Hartree-Fock (HF) approximation the single, independent electrons,
in the Coulomb potential of the frozen nuclei, feel the other electrons only as a mean
field.

The ϕj (xj) in equation 2.11 are the one-electron spin-orbitals. The electronic
coordinates xj denote the spatial coordinates (r⃗j), as well as the spin variable of
an electron (sj). Those two variables can be separated too (ϕj(xj) = ϕi(r⃗j)σ(sj)),
where σ(sj) can denote a spin up or spin down state. As our focus is solely on
the spatial orbitals ϕi(r⃗j) and spin orbitals are orthonormal, we will omit the spin
variable from this point onward. This permits each spatial orbital to be occupied
twice (by one spin up and one spin down electron), in accordance with the Pauli
exclusion principle. It results in N/2 spatial orbitals that need to be determined
(restricted HF theory).

Therefore, the problem once more simplifies to identifying the N/2 spatial or-
bitals, also referred to as molecular orbitals. The simplified equation is called the
restricted Hartree-Fock equation

F̂ ϕi(r⃗1) = ϵiϕi(r⃗1) (2.12)

where F̂ is the Fock operator and r⃗1 the coordinates of the first electron, but can be
the spatial coordinates of any electron. In this thesis our focus lies in determining
the molecular orbitals, rather than calculating the eigenvalues. This is because the

7



2.1. THE HARTREE-FOCK THEORY

overall ground state energy for a specific molecular state is established through the
expectation value of the total Hamiltonian in Born-Oppenheimer approximation(eq.
2.7) in state Φ (eq. 2.11). The Fock operator is an approximation, only considering
one electron in the field of the nuclei and all other electrons. It does also neglect
the constant nuclear-nuclear coulomb interaction term

F̂ = ĥ1 +

N/2∑
j=1

(
2Ĵj − K̂j

)
ĥ1 = − h̄2

2me

∇2
1 −

∑
A

ZAe
2

4πϵ0|R⃗A − r⃗1|

Ĵj =

∫
dr⃗2

ϕ∗
j(r⃗2)ϕj(r⃗2)e

2

4πϵ0|r⃗2 − r⃗1|

K̂jϕi(r⃗) =

[∫
dr⃗2

ϕ∗
j(r⃗2)ϕi(r⃗2)e

2

4πϵ0|r⃗2 − r⃗1|

]
ϕj(r⃗1)

(2.13)

The operator ĥ1 is called the core Hamiltonian and serves as an one-electron oper-
ator. It incorporates both the kinetic energy and the Coulomb interaction of the
electron with the nuclei. The Fock operator’s second term, a two-electron operator,
is a simplified version of the V ee term. It becomes solvable through the separation
of variables describing individual electrons (HF approximation). This two-electron
operator is composed of the Coulomb operator Ĵj and the exchange operator K̂j. It
depends on all the occupied spatial orbitals. The electron exchange term describes
the correlation between electrons with parallel spin, the Fermi correlation. Since we
are exclusively addressing spatial orbitals and disregarding spin orbitals, the factor
of two in the Coulomb operator accounts for both spin orientations [8].

Thus, once again, we have simplified the problem to equation 2.12, which now
requires solving. Equation 2.12 is a Pseudo-eigenvalue problem, as the Fock operator
F̂ also depends on the orbitals of the other electrons within the system.
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2.1. THE HARTREE-FOCK THEORY

Example 2.1.3 H2

In the case of H2 the approximate ground state wavefunction/Slater determinant is:

Φ(x1,x2) =
1√
2
[ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)] (2.14)

where the ϕi are still the molecular spin orbitals. These are equivalent to one spin-
down electron and one spin-up electron, both in the 1s (binding) spatial molecular
orbital. The problem (eq. 2.9) in Hartree-Fock approximation reduces to the Hartree-
Fock equation, as described above:

F̂ ϕ1s(r⃗1) = ϵiϕ1s(r⃗1) (2.15)

with the Fock-Matrix-operator for H2 being

F̂ = ĥ1 + 2Ĵ1 − K̂1

= − h̄2

2me

∇2
1

− ZHe
2

4πϵ0|R⃗1 − r⃗1|
− ZHe

2

4πϵ0|R⃗2 − r⃗1|

+

∫
dr⃗2

ϕ∗
1s(r⃗2)ϕ1s(r⃗2)e

2

4πϵ0|r⃗2 − r⃗1|

(2.16)
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2.1. THE HARTREE-FOCK THEORY

2.1.3 Roothaan-Hall self-consistent field equations

Because the Hartree-Fock equation (eq. 2.12) is non-linear, we must introduce two
additional assumptions to facilitate its solution. The fundamental concept is based
on approximating the molecular orbitals using a given basis set, which simplifies the
integrals in 2.13 for solvability. Consequently, a self-consistent equation known as
the Roothaan-Hall equation can be deduced and solved through iterative methods.

The first assumption we are going to make is referred to as the ”Linear Combina-
tion of Atomic Orbitals - Molecular Orbitals” (LCAO-MO). As the name suggests,
the molecular orbitals will be expressed as a linear combination of the nuclei-centered
atomic orbitals (χν) from the constituent atoms of the molecule.

ϕi(r⃗) =
∑
ν

cνiχν(r⃗) (2.17)

The coefficients cνi in this expansion are real and are the variables that will need to
be optimized later, as we will discover [3]. The LCAO for the molecules analyzed in
this thesis, will be presented in Section 3.2.

The final required approximation is the representation of atomic orbitals within
a finite basis set. The underlying concept is that any function can be presented
in the context of a complete basis set. However, achieving an exact representation
demands an infinitely large basis set, which is not feasible for computational pur-
poses. Experts have progressively refined basis sets for chemical applications and
optimized the coefficients and exponents in equation 2.18 for isolated atoms. These
identical coefficients are also utilized for molecules, even though the atoms are part
of the molecule. In our case, we will approximate the atomic orbitals (STO=Slater
type orbitals) using a Gaussian basis, comprising 3 Gaussians (STO-3G basis)

χ(r⃗) = N
3∑

i=1

aiψi(r⃗, αi)

ψi(r⃗, αi) = xkymzne−αir
2

(2.18)

N is a normalization constant, and the coefficients ai, and exponents αi rely on the
approximated atomic orbital, with αi defining the radial size of the basis function.
These values can be obtained from multiple available libraries [3]. PennyLane uses
a build in library, which can be changed to the ”basissetexchange” library. The
exponents k,m, and n are natural numbers which must fulfill l = k +m+ n, where
l is the angular momentum quantum number. They define the angular shape and
direction of the orbital. You can find the Gaussians that can be used for s, p, and
d orbitals in Table 2.1, as an example.
There exist various other basis sets available for approximating atomic orbitals, apart
from the STO-3G basis that we won’t be considering in this thesis [9][10]. We use
the Gaussian basis, because Gaussian functions are simple to evaluate analytically
and numerically. The STO-3G is the simplest, commonly used basis set [3].
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2.1. THE HARTREE-FOCK THEORY

orbital form k l m possible Gaussian basis functions

s orbitals (l=0) 0 0 0 e−αr2

px 1 0 0 xe−αr2

p orbitals (l=1) py 0 1 0 ye−αr2

pz 0 0 1 ze−αr2

dxx 2 0 0 x2e−αr2

dyy 0 2 0 y2e−αr2

d orbitals (l=2) dzz 0 0 2 z2e−αr2

dxy 1 1 0 xye−αr2

dxz 1 0 1 xze−αr2

dyz 0 1 1 yze−αr2

Table 2.1: Example of Gaussian basis functions for different angular momentum.

Expressing the molecular orbitals within our LCAO approach and Gaussian basis
set, we can now reduce equation 2.12 to an equation aimed at determining the
coefficients cνi from equation 2.17. Inserting our LCAO Ansatz in the HF equation
2.12, multiplying the equation by an atomic orbital χ∗

µ and integrating over
∫
dr⃗

results in the Roothaan-Hall equation∑
ν

FµνCνi = ϵi
∑
ν

SµνCνi ⇒ FC = SCE (2.19)

where F is the Fock-Matrix, C the coefficient matrix, S the overlap matrix of the
atomic orbitals, and E the diagonal matrix of the energie eigenvalues with entries

Fµν =

∫
χ∗
µ(r⃗)F̂χµ(r⃗)dr⃗

Sµν =

∫
χ∗
µ(r⃗)χµ(r⃗)dr⃗

(2.20)

The entries Cνi in the coefficient matrix are the variables for which we aim to solve
in equation 2.19. By diagonalizing the overlap matrix (D is the diagonal overlap
matrix), we can simplify the problem into an eigenvalue problem that can be solved
using standard techniques in linear algebra

F̃C̃ = C̃E (2.21)

where

S = VDVT X = VD−1/2VT C = XC̃ F̃ = XTFX (2.22)

The primary challenge stems from the fact that the Fock matrix still depends on
the coefficient matrix. Hence, we computationally solve this equation 2.21 through
iteration [3]. The procedure is as follows:

1. Set the initial value of the coefficient matrix as C̃0 = 0 = C0, meaning the only
contribution to the energy arises from the core Hamiltonian (F̂ (C0) = ĥ1).
This means we start by neglecting any interaction between the electrons.

2. Compute the result for the initial Fock-Matrix F̃0, and then solve 2.21 by
diagonalizing F̃0.
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2.1. THE HARTREE-FOCK THEORY

3. Check if the obtained coefficient matrix is consistent with the input coefficient

matrix (C̃1
?
= C̃0).

4. If this condition is met, our process is complete. Otherwise, update the initial
guess with C̃1 and iterate repeatedly until the two matrices match (C̃k =
C̃k+1).

Therefore, solving the Roothaan-Hall equation is called a self-consistent method.
What we essentially do is gradually adjust the interaction between the electrons,
progressing step by step until the interaction is exactly right to result in the low-
est energy state. This conclusion stems from the fact that solving this equation
is equivalent to identifying the molecular orbitals (approximated by a single Slater
determinant) that minimize the expectation value of the Hamiltonian, under the
condition of independent electrons occupying the lowest-energy orbitals [3][11]. In
the approximation of molecular orbitals using a single Slater determinant, the lowest
energy state is referred to as the Hartree-Fock state, and the corresponding energy
is called the Hartree-Fock energy.

Regarding the convergence of this method, the SCF procedure (Self-Consistent
Field method) typically achieves convergence within 10 to 20 iterations when an ap-
propriate initial guess is supplied. Nevertheless, in instances where the gap between
the highest occupied and lowest unoccupied orbital is narrow (which does not apply
to the molecules discussed in this thesis), the SCF procedure might encounter chal-
lenges in rapid convergence. It could oscillate between multiple solutions, converge
to a higher-lying solution, or even reach a saddle-point solution [11].

Example 2.1.4 H2

Now, let us come back to our example. For H2 the LCAO-MO would consist of the
occupied 1s orbitals of each constituent H atom of H2:

ϕi(r⃗) = c1iχ1(r⃗) + c2iχ2(r⃗) (2.23)

where χ1 is the 1s hydrogen orbital centered in atom H(1) and χ2 is the 1s hydrogen
orbital centered in atom H(2), respectively. What is required to define the Ansatz
here is the geometry of the molecule, specifically the distances rH−H between the
nuclei. In this thesis, we establish the origin of the coordinate system at the mid-
point between the two hydrogen atoms and position the molecule along the z-axis
(R⃗1 = [0, 0,−rH−H/2], R⃗2 = [0, 0, rH−H/2]).

The 1s orbitals of hydrogen are well-known solutions of the Schrödinger equation.
As mentioned before, in order to make the integrals below computationally tractable,
we need to approximate them using three Gaussians of the s-orbital form (table 2.1)
(STO-3G basis). The coefficients and exponents for the STO-3G basis of hydrogen
can be found in table 3.1.

The SCF procedure for determining c1i and c2i (eq. 2.23) unfolds as follows:

1. Calculate the four overlap integrals Sµν (eq. 2.20) for the overlap matrix S.

2. Diagonalize S and obtain X.

12



2.1. THE HARTREE-FOCK THEORY

3. Calculate the initial Fock matrix (F(C̃0 = 0), where C̃0 = 0 = C0), by solving
the four integrals:

Fµν(C̃0 = 0) =

∫
χ∗
µ(r⃗)F̂ (C̃0 = 0)χν(r⃗)dr⃗

=

∫
χ∗
µ(r⃗)

[
− h̄2

2me

∇2
1 −

ZHe
2

4πϵ0|R⃗1 − r⃗1|
− ZHe

2

4πϵ0|R⃗2 − r⃗1|

]
χν(r⃗)dr⃗

(2.24)
and then calculate F̃(C̃0 = 0) = XTF(C̃0 = 0)X.

4. Solve the eigenvalue problem F̃(C̃0 = 0)C̃ = C̃E(eq. 2.21) by diagonalizing
F̃(C̃0 = 0), and obtain C̃1 and E1.

5. If the obtained coefficient matrix C̃1 is consistent with the input coefficient
matrix C̃0, our process is complete. Otherwise, update the initial guess with
C̃1 and repeat step 3 to 6 until the two matrices match (C̃k = C̃k+1).

What we expect for H2 is to find a bonding (ϕ+ = A [χ1 + χ2]) and an antibond-
ing (ϕ− = B [χ1 − χ2], where A and B are constants) molecular 1s-orbital [12]. For
these molecular orbitals, the coefficients of the LCAO must be identical due to the
symmetry of H2. Both hydrogen atoms need to contribute in an equivalent manner.
The orbitals we find will be presented in section 3.2.
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2.2 Hamiltonian in second quantization

In quantum computation, for the purpose of representing a fermionic system using
qubits, we must employ the second-quantization approach, also referred to as oc-
cupation number representation, and subsequently translate the resultant fermionic
problem to qubits. In this section, our attention will be directed towards the former
aspect. The discussion of the latter will be covered in section 2.3. Additionally,
starting from this point, natural units will be utilized (h̄ = me = e = 1).

The second-quantization approach is conducted within the framework of the
Born-Oppenheimer approximation. The antisymmetry inherent to fermionic sys-
tems is captured through operator properties, and states are expressed in terms
of occupation numbers. Consequently, there’s no requirement for the states them-
selves to be antisymmetrized. Specifically, an electronic state is represented as
|n1, n2, · · · , nM⟩, where M denotes the number of spin-orbitals (N occupied orbitals
+ virtual orbitals). For fermionic systems, the values of np can be one if the spin-
orbital ϕp is occupied, and zero otherwise, in accordance with the Pauli exclusion
principle. To perceive the analogy, one can contrast this electronic state with the
Slater determinant in equation 2.11. Each Slater determinant corresponds to a
distinct electronic state. Any potential electronic state can be formulated as a su-
perposition of states of this kind.

Every operator in second quantization can be depicted using fermionic ladder
operators ap,a

†
p

a†p |n1, . . . , np, . . . , nM⟩ = δnp,0(−1)
∑

q<p nq |n1, . . . , (np + 1) , . . . , nM⟩
ap |n1, . . . , np, . . . , nM⟩ = δnp,1(−1)

∑
q<p nq |n1, . . . , (np − 1) , . . . , nM⟩

(2.25)

They are called the creation and annihilation operator, respectively, and fulfill the
anticommutation relations

[ap, aq] =
[
a†p, a

†
q

]
= 0

[
ap, a

†
q

]
= δpq (2.26)

In equation 2.25, the factor (−1)
∑

q<p nq accounts for the antisymmetry (exchange
symmetry). The Kronecker delta handles the Pauli exclusion principle.

Utilizing this understanding, the Hamiltonian in second-quantized form can be
represented using these operators as follows:

Ĥ =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa

†
qaras (2.27)

The electronic Hamiltonian in second quantized form also includes the constant
nuclear repulsion term: Ĥe = Ĥ + VNcNc . We will neglect this term for now, but
it will be included in the Hamiltonian and energy calculations in Chapters 3 and
4. Here, hpq and hpqrs represent the one- and two-electron integrals, respectively,
that are essential for constructing the molecular Hamiltonian. These integrals can
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be computed by performing integrations over molecular spin orbitals ϕ as follows:

hpq =

∫
ϕp(x)

∗

(
−∇2

2
−

N∑
i=1

Zi

|r⃗ − R⃗i|

)
ϕq(x)dx

hpqrs =

∫
ϕp(x1)

∗ϕq(x2)
∗ϕr(x2)ϕs(x1)

|r⃗1 − r⃗2|
dx1dx2

(2.28)

Here, x encompasses both spatial and spin degrees of freedom, in analogy to section
2.1.2. Once more, we will disregard spin dependence and center our attention on
spatial orbitals. We can achieve this by modifying our summations in equation 2.27,
as spin integration primarily results in certain integrals being set to zero due to or-
thonormality. The one-electron integral incorporates contributions from electronic
kinetic energy and the electron-nuclear Coulomb interaction of one electron with all
nuclei. The two-electron integral accounts for the electron-electron Coulomb inter-
action [3] [13].

Using the LCAO approach (eq. 2.17), the integrals in equation 2.28 can be
computed upon determining the coefficient matrix C (eq. 2.19). Subsequently,
after establishing the coefficient matrix, we can formulate the optimized molecular
orbitals (eq. 2.17), construct the molecular Hamiltonian in second-quantized form
(eq. 2.27), and calculate the Hartree-Fock energy.

Example 2.2.1 H2

For H2, as elucidated in the preceding section, we expounded that the electrons can
inhabit bonding and antibonding orbitals. Taking spin orientation into account, we
discern four molecular spin orbitals. Consequently, a feasible two-electron state as-
sumes the form |n1, n2, n3, n4⟩, where the first two wavefunctions correspond to the
bonding orbital with up-spin, bonding orbital with down-spin, and antibonding orbital
with up and down spins, respectively. The lowest energy determinant (HF state) is
simply |1, 1, 0, 0⟩, as the bonding orbital boasts a lower energy.

The complete Hamiltonian in second-quantization is then as follows:

Ĥ =h11a
†
1a1 + h22a

†
2a2 + h33a

†
3a3 + h44a

†
4a4

+ h1221a
†
1a

†
2a2a1 + h3443a

†
3a

†
4a4a3 + h1441a

†
1a

†
4a4a1 + h2332a

†
2a

†
3a3a2

+ (h1331 − h1313) a
†
1a

†
3a3a1 + (h2442 − h2424) a

†
2a

†
4a4a2

+ ℜ (h1423)
(
a†1a

†
4a2a3 + a†3a

†
2a4a1

)
+ ℜ (h1243)

(
a†1a

†
2a4a3 + a†3a

†
4a2a1

)
+ ℑ (h1423)

(
a†1a

†
4a2a3 − a†3a

†
2a4a1

)
+ ℑ (h1243)

(
a†1a

†
2a4a3 − a†3a

†
4a2a1

)
(2.29)

It’s evident that certain one- and two-electron integrals vanish as a consequence of
spin integration, while others vanish due to spatial symmetry [4]. For example, only
one-electron integrals of same spin orbitals, do not vanish. Moreover, they are con-
tingent upon the distance between the nuclei.

The first row of operators in the Hamiltonian 2.30 contains the one-electron oper-
ators, responsible for the energy contribution of each molecular orbital to the overall

15



2.2. HAMILTONIAN IN SECOND QUANTIZATION

energy of the system. The second and third rows encompass the coulomb and ex-
change operators, respectively, while the final two rows involve the double excitation
operators [14]. The third row’s coefficients are antisymmetrized, which reflects the
exchange antisymmetry of fermions.

Using the indistinguishability of electrons, we obtain hpqrs = hqpsr and a
†
pa

†
qaras =

a†qa
†
pasar. Additionaly we observe, that hpqrs = hsrqp. These two equations were fun-

damental in deriving the real and imaginary double excitation terms in the final two
rows [15].

Using the normalization of spin integration, and the fact that orbitals 1 and
2, as well as 3 and 4, share the same spatial orbitals, leading to some integrals
being identical [4], we can derive a simplified version of equation 2.29. It’s worth
noting that for the stable molecule H2, the molecular orbitals and, consequently, the
coefficients are real, making the imaginary components of equation 2.29 disappear:

Ĥ =h11(a
†
1a1 + a†2a2) + h33(a

†
3a3 + a†4a4)

+ h1221a
†
1a

†
2a2a1 + h3443a

†
3a

†
4a4a3 + h1441(a

†
1a

†
4a4a1 + a†2a

†
3a3a2)

+ (h1331 − h1313) (a
†
1a

†
3a3a1 + a†2a

†
4a4a2)

+ h1423

(
a†1a

†
4a2a3 + a†3a

†
2a4a1 + a†1a

†
2a4a3 + a†3a

†
4a2a1

) (2.30)
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2.3 Fermion-qubit mappings

As previously mentioned, once the Hamiltonian is obtained in second quantization,
it becomes essential to transform the problem into qubits to enable its representa-
tion on a quantum computer. One common mapping method is the Jordan-Wigner
transformation. Converting a state in this convention is straightforward. An occu-
pied orbital corresponds to an up-spin qubit, and an unoccupied one to a down-spin
qubit (e.g., |1, 1, 0, 0⟩ ⇒ |↑, ↑, ↓, ↓⟩). Consequently, we can represent any element of
the occupation number basis.

However, the challenge lies in mapping the operators. We need to map fermionic
operators to operators that act on qubits. Qubit operators are bosonic operators
like the Pauli operators {1, σx, σy, σz} = {1, X, Y, Z}:

1 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.31)

The mapping process needs to preserve the required fermionic exchange symmetries.
Appropriate qubit operators are the σ±

j = σx
j ± iσy

j rotations, which convert an up-

spin to a down-spin (âj → σ−
j ) and a down-spin to an up-spin (â†j → σ+

j ), respec-
tively. Moreover, we include Pauli-Z operators to uphold the exchange symmetry
(the fermionic anti-commutation relations), resulting in the following transforma-
tion:

ap =
1

2
Z1 ⊗ · · ·Zp−1 ⊗ (Xp − iYp)

a†p =
1

2
Z1 ⊗ · · ·Zp−1 ⊗ (Xp + iYp)

(2.32)

The challenge with the Jordan-Wigner mapping is the requirement for a large
number of single-qubit gates (Pauli-Z operators). Bravyi and Kitaev introduced an
alternative mapping that encodes this anti-symmetrization more efficiently. Addi-
tionally, various alternative approaches have been proposed to enhance the Jordan-
Wigner mapping in terms of qubit needed. However, for our objectives, we won’t
delve further into these mappings, as the Jordan-Wigner mapping is sufficient [4].

Example 2.3.1 H2

While the qubit Hamiltonian can become quite complex in the general case, it is
relatively simple in the H2 case:

Ĥ =b11 + b2Z1 + b3Z2 + b4Z3 + b5Z4

+b6Z1Z2 + b7Z1Z3 + b8Z1Z4

+b9Z2Z3 + b10Z2Z4 + b11Z3Z4

+b12 (X1Y2Y3X4 + Y1X2X3Y4 −X1X2Y3Y4 − Y1Y2X3X4) .

(2.33)

The constants bi are parameters that we won’t detail here. However, it’s important
to note that they are expressed in units of Hartree, and dependent on the internuclear
distance. Furthermore, when the complete electronic Hamiltonian is considered, in-
cluding the nuclear repulsion term, the only thing that changes is the constant b1.
This is obvious since the nuclear repulsion term is only a constant, not an operator.
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The determined values for the complete electronic Hamiltonian will be provided in
section 3.2. It is apparent that the qubit Hamiltonian encompasses operators in-
volving one, two, and four qubits. These correspond to the operators in the first,
second/third, and fourth lines of equation 2.33, respectively. This alignment mirrors
the structure found in the second-quantized Hamiltonian (eq. 2.30).

To elucidate how these terms are derived from the second-quantized Hamiltonian,
let’s provide an example for the one-, two-, and four-qubit operators:

a†1a1 =
1

4
[X1 + iY1] [X1 − iY1]

=
1

4
[X1X1 − iX1Y1 + iY1X1 + Y1Y1]

=
1

2
1 +

1

2
Z1

a†1a
†
2a2a1

[a1,a2]=0=[a†2,a1]=0
= a†1a1a

†
2a2

= a†1a1

[
1

4
Z1Z1 [X2 + iY2] [X2 − iY2]

]
= a†1a1

[
1

2
1 +

1

2
Z2

]
=

1

4
[1 + Z1 + Z2 + Z1Z2]

a†1a
†
4a2a3 = a†1a

†
4

[
1

4
Z1 [X2 − iY2]Z1Z2 [X3 − iY3]

]
= a†1a

†
4

[
1

4
[X2 − iY2] [X3 − iY3]

]
= − 1

16
[X1X2X3X4

+ iX1X2X3Y4 − iX1X2Y3X4 − iX1Y2X3X4 + iY1X2X3X4

+X1X2Y3Y4 +X1Y2X3Y4 −X1Y2Y3X4 − Y1X2X3Y4 + Y1X2Y3X4 + Y1Y2X3X4

− iX1Y2Y3Y4 + iY1X2Y3Y4 + iY1Y2X3Y4 − iY1Y2Y3X4

+ Y1Y2Y3Y4]
(2.34)

We utilized the anticommutation relations and multiplied operators that act on the
same qubits. It’s noticeable that the one-electron operator results in a diagonal qubit
operator, implying a system of non-interacting fermions. This also holds true for
the two-qubit operator, which is a product of two one-qubit operators following the
same pattern. Yet, when examining the four-qubit operators, a non-diagonal outcome
emerges. This signifies that the four-qubit operators describe interactions between
the electrons [16].

Hence, it becomes evident what each term of the Hamiltonian in equation 2.33
signifies. These terms can be understood in analogy with the second-quantized Hamil-
tonian.
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2.4 The Variational Quantum Eigensolver

After exploring the process of constructing the qubit Hamiltonian within the Hartree-
Fock approximation, which is essential for representing our system on a quantum
computer, we can now proceed to outline the actual approach we employed to com-
pute the ground states of certain small molecules.

As previously mentioned, exact solutions are generally not feasible for most elec-
tronic structure problems (eq. 2.6). The Hartree-Fock method provides an initial
approximation for the molecular orbitals and ground state energies, facilitating the
creation of the qubit Hamiltonian. However, this approximation of the molecu-
lar orbitals (HF-state; eq. 2.11) and thus the ground state energies (HF-energy) is
rather crude, as it neglects the Coulomb correlation among the electrons. This leads
to a total electronic energy different from the exact solution of the non-relativistic
Schrödinger equation within the Born–Oppenheimer approximation. In quantum
chemistry, the goal is to obtain solutions that closely resemble the exact values. To
achieve this, quantum computing techniques can be leveraged to attain improved
approximations for molecular orbitals and ground states by entangling qubits in a
quantum circuit.

One of these techniques, known as Post-Hartree-Fock methods, is the Variational
Quantum Eigensolver (VQE). In this approach, the circuit is initialized in the HF-
state, and gates are applied to entangle the qubits. This concept aligns with the idea
of considering more than one Slater determinant for the wavefunction in equation
2.11. The entanglement leads to more accurate molecular orbitals, minimizing the
expectation value of the Hamiltonian created with the molecular orbitals within the
Hartree-Fock approximation. Consequently, a better approximation of the ground
state is obtained. The entangling gates are parameterized by a variable θ, resulting
in a parameter-dependent wave function. The observation that the ground state
energy (energy in the true ground state) is lower than the energy in the initial state
(HF-state) is encapsulated by the Variational Theorem:

E(θ) = ⟨Φ(θ)|Ĥ|Φ(θ)⟩ ≥ E0 (2.35)

where Φ is normalized [3][17]. By optimizing the parameter θ, we determine the
smallest eigenstate of the utilized Hamiltonian. This approach yields an approximate
ground state energy that is closer to the true ground state energy compared to the
HF-energy. Figure 2.1 provides a visual representation of the different approximative
energy levels.

The Hartree-Fock energy represents the most crude approximation and serves as
an upper bound for the energy. Achieving the Hartree-Fock limit, which represents
the best approximation attainable within the HF-approximation, requires expand-
ing the atomic basis set to full completeness. The difference between the HF limit
and the exact energy, which considers complete correlation effects (full CI method=
eq. 2.36) and employs a full basis set, is referred to as the correlation energy. This
term encompasses the contribution to the energy arising from Coulomb correlation
[7]. The energies obtained through the VQE methodology presented in this thesis
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Figure 2.1: Electron correlation energy and illustration of approximate energie ob-
tained by solving the the Schrödinger equation for various approximation levels
(source: [7]).

will lie between these two limits.

2.4.1 The VQE algorithm

Now, let’s investigate how the VQE actually operates. As mentioned earlier, VQE
is a quantum-classical algorithm designed to minimize the so-called cost function,
which, in our case, represents the system’s energy. The minimization process is
divided into two parts: the first part is executed on a quantum computer, while the
second part runs on a classical computer.

1. Quantum Part:
The quantum computer sets up a small quantum circuit, initialized in the
Hartree-Fock state. This circuit applies entangling gates/rotations to the
qubits, based on an Ansatz, to modify this initial state. Then the result-
ing expectation value of the Hamiltonian in this state is measured and passed
to the classical computer.
One standard approximation used for an accurate corrected wavefunction,
compared to the Hartree-Fock state, is the Unitary Coupled Cluster (UCC)
method. It approximates the many-electron wavefunction Φ, not by a single
Slater determinant (as in the HF-approximation; eq. 2.11), but by a linear
combination of all possible Slater determinants of a complete set of spin or-
bitals, including excited state Slater determinants:

Φ = c0|ΦHF > +
∑
a,r

cra|Φr
a > +

∑
a<b,r<s

crsab|Φrs
ab > + · · · (2.36)

Here, the first term on the right side is the HF-state, the second term describes
all determinants with a single-particle excitation from state a to r, the third
term describes all double excitations from the states a and b to states r and
s, and so on. In this thesis, we use the UCCSD (Unitary-Cupled-Cluster-
Singles and Doubles) approximation, which includes only the Hartree-Fock,
single-excitation, and double-excitation Slater determinants. It is the most
common approximation of Φ (eq. 2.36) [6].
The gate Ansatz for our circuit in UCCSD corresponds to applying all possible
single- and double-excitation rotations to the qubits, changing the initial state.
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These rotations depend on the angle θ. Single excitations are represented by
two-qubit gates, while double excitations are represented by four-qubit gates:

single exitation G(θ) =


1 0 0 0
0 cos(θ/2) − sin(θ/2) 0
0 sin(θ/2) cos(θ/2) 0
0 0 0 1


with ordering |00⟩, |01⟩, |10⟩ |11⟩
⇒ G(θ)|01⟩ = cos(θ/2)|01⟩+ sin(θ/2)|10⟩
⇒ G(θ)|10⟩ = cos(θ/2)|10⟩ − sin(θ/2)|01⟩

(2.37)

double exitation G(2)(θ)|0011⟩ = cos(θ/2)|0011⟩+ sin(θ/2)|1100⟩
G(2)(θ)|1100⟩ = cos(θ/2)|1100⟩ − sin(θ/2)|0011⟩

(2.38)

A single excitation corresponds to entangling the states |01⟩ and |10⟩, which
differ by the excitation of a single particle. On the other hand, a double exci-
tation corresponds to entangling states |1100⟩ and |0011⟩, where the transfor-
mation from |1100⟩ to |0011⟩ is interpreted as the ”excitation” of two particles
from the first pair of qubits to the second pair of qubits [3].

2. Classical Part:
Receiving the resulting expectation value of the Hamiltonian, the classical
computer employs optimization techniques to determine optimized parame-
ters (θ) that minimize the energy cost function.
One common optimization method used here is a gradient-based method,
which works well with automatic differentiation in Pennylane. This method,
known as the gradient descent optimizer (machine learning technique), finds
the minimum energy by adjusting the input parameter θ along the steepest
slope of the energy landscape:

θ → θ − η
∂E(θ)

∂θ
(2.39)

where η represents the step size. The choice of η is crucial, it should be large
enough for fast convergence but small enough to avoid overshooting the mini-
mum [18].
The optimized parameter is then fed back into the quantum part, and a new
expectation value for the energy is calculated. This process is repeated itera-
tively until the energy converges to its minimum.
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2.4.2 The challenges of VQE

The Variational Quantum Eigensolver (VQE) algorithm efficiently combines quan-
tum and classical computations to approximate the ground state energy and molec-
ular orbitals. However, there are three primary challenges that we want to highlight,
associated with the VQE approach [3]:

1. Choice of Ansätze: There are multiple possible choices for the initial state
and the unitary transformation of the state (gates). It’s crucial to make wise
selections here. In this work, we use the Hartree-Fock state as the initial state,
which is a good approximation near equilibrium. This choice helps the VQE
algorithm converge faster than starting with a random state. Additionally,
we use the UCCSD Ansatz, as described above, because it is the most simple
approximation of the wavefunction. These are the commonly used Ansätze.

2. Computing the Expectation Value of the Hamiltonian: Another sig-
nificant challenge lies in calculating the expectation value of the Hamiltonian.
When running the circuit with a simulator, PennyLane transforms the Hamil-
tonian H into a matrix, and the quantum state (Φ) into a vector. Subsequently,
it performs matrix-vector multiplication to determine the expectation value.
On the other hand, when utilizing a Quantum Device for execution, the Hamil-
tonian can be expressed as a sum of individual terms (Ĥ =

∑
i Ĥi). Each of

these terms is measured independently. To optimize resource usage, the same
set of qubits can be repurposed for each term by repeatedly preparing the
quantum state. This allows for the computation of the expectation value as
the sum of individual measurements (< Ĥ >=

∑
i < Ĥi >).

In the Chapter 4, we will provide an example of the VQE implementation in this
thesis, once again focusing on H2.

2.5 ADAPT-VQE

Moreover, while the fixed Ansatz described above may perform well in many scenar-
ios, it lacks efficiency for specific molecules, especially larger ones. In such cases, re-
ducing the circuit depth becomes crucial to enhance efficiency. An effective strategy,
which we will employ in this thesis, is the ADAPT-VQE algorithm. This algorithm
dynamically adjusts the Ansatz based on the specific molecule under investigation.

The approach involves defining a pool of gates (in our case, all possible single
and double gates), applying each gate to the initial state, and then selecting the
gate that yields the largest gradient, that means the one contributing the most to
the change in energy. This selected gate is then optimized using the traditional
VQE method, and the resulting gate parameters are fixed, defining a new initial
state. This process iterates until a convergence criterion is met [3]. In our case,
the convergence criterion is approximately zero gradient, indicating that the energy
change becomes negligible with the addition of more gates. This criterion signifies
that the optimization process has effectively minimized the energy.
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3 Construction of the molecular
Hamiltonian

After having discussed the theoretical foundations, we want to explain how the VQE
was implemented in this thesis. The first thing we need for the implementation is
the molecular Hamiltonian. In this chapter, we will examine the Hamiltonians and
molecular orbitals we constructed for a fixed molecular geometry. The implementa-
tion and the results of the VQE will be presented in Chapter 4.

Our implementation utilizes PennyLane, particularly making use of the relatively
recent quantum chemistry module ”qchem” within PennyLane. This setup allows us
to employ the VQE method and compute ground states for four small molecules: two
diatomic molecules (H2 and LiH) and two triatomic molecules (BeH2 and H2O).
Notably, one of these molecules possesses a 3-dimensional geometry, showcasing the
versatility of our approach across various system configurations.

3.1 PennyLane for quantum chemistry

PennyLane is incredibly helpful for implementing a VQE for ground state calcula-
tions, particularly in constructing the molecular Hamiltonian. It provides built-in
methods for constructing atomic and molecular orbitals, building Fock matrices, and
solving the SCF equations for the optimized orbitals. This means we can simply
construct the molecular Hamiltonians with PennyLane and use them in the VQE
afterwards.

Furthermore, PennyLane allows us to compute derivatives of these objects through
automatic differentiation, which is essential for the optimization method of our VQE.
This method differentiates functions, requiring resources comparable to those needed
for function evaluation, making the implementation efficient. Consequently, it has
gained significant attention in machine learning [3].

3.2 Qubit Hamiltonian with Pennylane

As the qubit Hamiltonian describes our system, it is the most crucial component
of the ground state calculation. Therefore, it is essential to examine closely the
Hamiltonians we constructed using PennyLane.
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

The construction follows the methods described in the previous sections. For a
given molecule and geometry, first, the optimized molecular orbitals are calculated
(section 2.1.3). Then, the Hamiltonian in second quantization is derived (section
2.2), and, finally, the Jordan-Wigner transformation is applied (section 2.3). We
will present the constructed Hamiltonians and all the further necessary data for the
construction, starting with the hydrogen molecule.

In Chapter 4.2, we will calculate the ground state energy of all the molecules pre-
sented in this chapter, for multiple geometries. Since the Hamiltonians and molec-
ular orbitals have the same form but different coefficients for different geometries,
we will not present all of them here.

3.2.1 Hydrogen molecule - H2

For the hydrogen molecule (H2), we previously presented the Linear Combination
of Atomic Orbitals (LCAO) in the example in section 2.1.3. For simplicity and
consistency, we will write it down here using bra-ket notation:

|ϕi >= c1i|1s >H(1) +c2i|1s >H(2) (3.1)

The coefficients and exponents of the STO-3G basis set for a hydrogen 1s-orbital
are sourced from the build in library of PennyLane, and you can find them in table
3.1.

atomic orbital i ai αi

1 0.1543289673 3.425250914
1s 2 0.5353281423 0.6239137298

3 0.4446345422 0.1688554040

Table 3.1: Coefficients ai and exponents αi for the STO-3G approximation of a 1s
hydrogen orbital. Index i is the Gaussians index (always 1 to 3).

The two optimized molecular orbitals in the LCAO approach (eq. 2.23), and con-
sequently the qubit Hamiltonian, depend on the internuclear distance between the
hydrogen atoms. We will now present these orbitals for an internuclear distance of

0.742
◦
A. They are acquired using the Self-Consistent Field (SCF) method, which

yields the following coefficients: It’s evident that we obtain exactly what we ex-

i c1i c2i
+ -0.54905874 -0.54905874
- -1.21012637 1.21012637

Table 3.2: Optimized coefficients cνi for H2 at rH−H = 0.742Å (eq. 2.23). We do
find two molecular orbitals ϕ+ and ϕ−

pected: a bonding orbital (ϕ+) and an antibonding orbital (ϕ−), as explained in the
example in section 2.1.3.
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

The resulting qubit Hamiltonian is

Ĥ
(
rH−H = 0.742Å

)
=− 0.09961 + 0.1711Z1 + 0.1711Z2 − 0.2225Z3 − 0.2225Z4

+ 0.1686Z1Z2 + 0.1205Z1Z3 + 0.1658Z1Z4

+ 0.1658Z2Z3 + 0.1205Z2Z4 + 0.1743Z3Z4

+ 0.0453 (X1Y2Y3X4 + Y1X2X3Y4 −X1X2Y3Y4 − Y1Y2X3X4) .
(3.2)

where the coefficients are expressed in units of Hartree. These terms match those
in equation 2.33, confirming our expectations. Moreover, the equality of the spatial
orbitals for spin orbitals 1 and 2, as well as 3 and 4, which we utilized in Equation
2.30, is also evident in the coefficients derived here. This demonstrates the success-
ful construction of the Hamiltonian with PennyLane. It is obvious that to represent
this Hamiltonian in a quantum circuit, we need 4 qubits, as there are up to four
Pauli operators.

The construction of the Hamiltonian for other molecules follows a similar pro-
cedure. The primary distinction lies in the Linear Combination of Atomic Orbitals
(LCAO). In the case of larger atoms with more electrons and consequently more or-
bitals, we must consider higher-order orbitals. In our study, which includes molecules
such as H2, LiH, BeH2, and H2O, all of the atoms have atomic numbers lower than
10. Therefore, we need to consider orbitals up to the 2p-orbital. As a result, the
Hamiltonians for these molecules contain a larger number of terms compared to
H2 in order to faithfully represent the entire system. In the case of heteronuclear
molecules, it’s important to note that different atoms contribute differently to the
Hamiltonian. The molecular orbitals in the heteronuclear case will be concentrated
more around one nucleus than the other. Additionally, the coefficients and expo-
nents of the STO-3G approximation for atomic orbitals, which are sourced from the
build in library of PennyLane, naturally differ for various atoms.

3.2.2 Lithium hydride - LiH

As we explained, the Linear Combination of Atomic Orbitals (LCAO) involves a lin-
ear combination of all atomic orbitals present in the molecule. For Lithium hydride
(LiH), this means we have to consider the orbitals of both hydrogen and lithium.
This results in the following LCAO:

|ϕi > = c1i|1s >H

+ c2i|1s >Li +c3i|2s >Li +c4i|2px >Li +c5i|2py >Li +c6i|2pz >Li

(3.3)

Since each of these atomic orbitals needs to be approximated using the STO-3G
basis, the coefficients and exponents table becomes significantly larger, now involving
six different orbitals. You can find the coefficients and exponents for the STO-3G
basis of the lithium orbitals in Table 3.3. The coefficients and exponents for the
hydrogen orbital can still be found in Table 3.1.
The geometry used for lithium hydride here is analogous to that of H2. We place
the origin in the middle between the two atoms and align the molecule with the
z-axis. The optimized molecular orbitals and the qubit Hamiltonian are presented
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

atomic orbital i ai αi

1 0.1543289673 16.11957475
1s 2 0.5353281423 2.936200663

3 0.4446345422 0.794650487
1 -0.09996722919 0.6362897469

2s 2 0.3995128261 0.1478600533
3 0.7001154689 0.0480886784
1 0.155916275 0.6362897469

2px 2 0.6076837186 0.1478600533
3 0.3919573931 0.0480886784
1 0.155916275 0.6362897469

2py 2 0.6076837186 0.1478600533
3 0.3919573931 0.0480886784
1 0.155916275 0.6362897469

2pz 2 0.6076837186 0.1478600533
3 0.3919573931 0.0480886784

Table 3.3: Coefficients ai and exponents αi for the STO-3G approximation of the
Li orbitals. Index i is the Gaussians index (always 1 to 3).

here for an internuclear distance of 1.57Å.
Since we have six different atomic orbitals, we expect to find six different molecular
orbitals. This is exactly what we find with the SCF method. The results are
presented in Table 3.4.

i c1i c2i c3i c4i c5i c6i
1 -0.0050695 -0.9912179 -0.0325277 0.0000000 0.0000000 0.0065452
2 0.5473847 -0.1691179 0.4525666 0.0000000 0.0000000 0.3470727
3 -0.1380414 -0.2096517 0.8000105 0.0000000 0.0000000 -0.6124250
4 0.0000000 0.0000000 0.0000000 0.9999995 0.0010043 0.0000000
5 0.0000000 0.0000000 0.0000000 0.0010043 -0.9999995 0.0000000
6 1.200391 0.0896222 -0.7147686 0.0000000 0.0000000 -0.9886064

Table 3.4: Optimized coefficients cνi for LiH at rLi−H = 1.57Å (eq. 3.3).

We want to verify our resulting molecular orbitals for the simplest example.
As explained in [19], for the orbitals of LiH, we expect to find, within our optimized
orbitals, a 1s orbital that is mostly affected by the 1s lithium orbital. This expec-
tation arises from the fact that the Li 1s orbital energy lies below the H 1s orbital
energy, and the 1s orbitals are tightly bound to their respective nuclei, resulting in
only small interactions. Taking a look at Table 3.4, one can see that orbital one
has the most substantial contribution from the Li 1s orbital, making it a suitable
candidate for the 1s molecular orbital. This observation confirms that our algorithm
is functioning correctly once again.
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

The calculated qubit Hamiltonian for LiH is as follows:

Ĥ
(
rLi−H = 1.57Å

)
= −5.72711 − 0.2993Z1 − 0.2993Z2 − 0.3904Z3

− 0.3904Z4 − 0.4257Z5 − 0.4257Z6 − 0.4257Z7

− 0.4257Z8 − 0.5680Z9 − 0.5680Z10

+ 0.1223Z1Z2 + 0.0529Z1Z3 + 0.0561Z1Z4

+ 0.0620Z1Z5 + 0.0679Z1Z6 + 0.0620Z1Z7

+ 0.0679Z1Z8 + 0.0828Z1Z9 + 0.1137Z1Z10

+O(ZiZj)

+ 0.0120X1X3 − 0.0018X2X4

− 0.0018Y2Y4 + 0.0120Y1Y3

− 0.0040(Y2Z3Y4 +X2Z3X4 + Y1Z2Y3 +X1Z2X3)

− 0.0309Y1Y2X9X10

+O(Xi/Yi/Zi Xj/Yj/Zj Xk/Yk/Zk Xl/Yl/Zl)

− 0.0090Y3Z5Z6Z7Z8Y9

+ · · ·
+ 0.0086X1X2Y3Z4Z5Z6Z7Z8Z9Y10

(3.4)

We have only provided a subset of terms here to illustrate that the Hamiltonian
for LiH contains significantly more terms than that of the hydrogen molecule. The
terms represented by O(ZiZj) include interactions between different pairs of atomic
orbitals (orbital i and j), where i and j range from 2 to 9 and 2 to 10, respectively.
The remaining terms, represented byO(Xi/Yi/Zi Xj/Yj/Zj Xk/Yk/Zk Xl/Yl/Zl)
and the ellipsis (· · · ), involve various combinations of 4, 6, 7, 8, 9, and 10 Pauli X,
Y, and Z operators acting on different qubits. The coefficients are expressed in units
of Hartree. You can find the full qubit Hamiltonian in the Appendix.

We can see that this is analogous to the H2 Hamiltonian, but it considers more
relevant molecular orbitals in the system. One question that may arise here is why
the index runs only up to 10, implying that 10 qubits are involved, even though
12 would be needed to represent all six molecular orbitals, considering both up and
down spins. The reason for this is that lithium has 3 electrons, resulting in a closed
first shell. For simulations, we can neglect this closed shell and only consider the
active electrons responsible for bonding, which amounts to 5 orbitals or 10 qubits.

This example illustrates that complexity increases rapidly when adding more
electrons to a system. For instance, H2 with 2 electrons only requires 4 qubits,
while LiH with 4 electrons needs 10 qubits to represent its electronic structure
accurately.

3.2.3 Beryllium hydride - BeH2

Now let us consider beryllium hydride. BeH2, composed of two hydrogen atoms and
one beryllium atom, exhibits symmetry around the beryllium atom. The LCAO for
beryllium hydride is similar to that of lithium hydride, but it includes an additional
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

H 1s orbital due to the presence of an extra hydrogen atom:

|ϕi > = c1i|1s >H(1) +c2i|1s >H(2)

+ c3i|1s >Be +c4i|2s >Be +c5i|2px >Be +c6i|2py >Be +c7i|2pz >Be

(3.5)

The STO-3G coefficients and exponents for the beryllium orbitals can be found in
Table 3.5.

atomic orbital i ai αi

1 0.1543289673 30.16787069
1s 2 0.5353281423 5.495115306

3 0.4446345422 1.487192653
1 -0.09996722919 1.31483311

2s 2 0.3995128261 0.3055389383
3 0.7001154689 0.0993707456
1 0.155916275 1.31483311

2px 2 0.6076837186 0.3055389383
3 0.3919573931 0.0993707456
1 0.155916275 1.31483311

2py 2 0.6076837186 0.3055389383
3 0.3919573931 0.0993707456
1 0.155916275 1.31483311

2pz 2 0.6076837186 0.3055389383
3 0.3919573931 0.0993707456

Table 3.5: Coefficients ai and exponents αi for the STO-3G approximation of the
Be orbitals. Index i is the Gaussians index (always 1 to 3).

BeH2 is the first triatomic molecule we examine. It is known to arrange in an
angle of 180◦ [20], making it one-dimensional and describable solely by the distance
between the nuclei (rBe−H), similar to the diatomic molecules we’ve previously ex-
amined. We establish the origin at the position of the beryllium atom and, once
again, align the molecule with the z-axis. Here, we will present our results for a
nuclear distance of 1.33Å.

Since we have 7 orbitals in the LCAO, we expect to find 7 molecular orbitals
with the SCF method. These are shown in Table 3.6.
Since the molecule is symmetric around the origin, we expect to observe symmetry
in the molecular orbitals as well, similar to the hydrogen molecule. In this case, the
symmetry arises from the atomic H orbitals. The H atoms are symmetrically placed
around the origin, specifically along the z-axis. Therefore, the contribution of both
the 1s H orbitals should be the same for all the optimized molecular orbitals. As
seen in Table 3.6, this is indeed the case, with c1i and c2i having the same values,
except for the sign.

In the case of beryllium hydride, we have 7 orbitals, which would require 14
qubits for Hamiltonian representation. However, by neglecting the inner shell once
again (2 1s orbitals for 1 spin up and 1 spin down), we can reduce the number
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

i c1i c2i c3i c4i c5i c6i c7i
1 0.0027788 0.0027788 -0.9917529 -0.0317595 0.0000000 0.0000000 0.0000000
2 0.3944653 0.3944653 -0.2244827 0.5564571 0.0000000 0.0000000 0.0000000
3 -0.4046822 0.4046822 0.0000000 0.0000000 0.0000000 0.0000000 0.5034959
4 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000725 0.0000000
5 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000725 1.0000000 0.0000000
6 -0.8227281 -0.8227281 -0.2181327 1.2335410 0.0000000 0.0000000 0.0000000
7 1.0355076 -1.0355076 0.0000000 0.0000000 0.0000000 0.0000000 1.4589256

Table 3.6: Optimized coefficients cνi for BeH2 at rBe−H = 1.33Å (eq. 3.5).

of qubits to 12. Consequently, the Hamiltonian should have indices up to 12 and
include terms with up to 12 Pauli operators. As expected, the Hamiltonian does
indeed have this structure. However, due to its length and complexity, we won’t
present the Hamiltonian here as it wouldn’t provide any significant advantage in
understanding. You can find the full qubit Hamiltonian in the Appendix.

3.2.4 Water molecule - H2O

The last and most complex molecule we want to examine is the water molecule.
Similar to BeH2, this molecule is symmetric around the oxygen atom. The LCAO
approach for water is similar to that of beryllium hydride:

|ϕi > = c1i|1s >H(1) +c2i|1s >H(2)

+ c3i|1s >O +c4i|2s >O +c5i|2px >O +c6i|2py >O +c7i|2pz >O

(3.6)

The coefficients and exponents for the STO-3G approximation of the oxygen orbitals
are presented in Table 3.7.

atomic orbital i ai αi

1 0.1543289673 130.7093214
1s 2 0.5353281423 23.80886605

3 0.4446345422 6.443608313
1 -0.09996722919 5.033151319

2s 2 0.3995128261 1.169596125
3 0.7001154689 0.38038896
1 0.155916275 5.033151319

2px 2 0.6076837186 1.169596125
3 0.3919573931 0.38038896
1 0.155916275 5.033151319

2py 2 0.6076837186 1.169596125
3 0.3919573931 0.38038896
1 0.155916275 5.033151319

2pz 2 0.6076837186 1.169596125
3 0.3919573931 0.38038896

Table 3.7: Coefficients ai and exponents αi for the STO-3G approximation of the O
orbitals. Index i is the Gaussians index (always 1 to 3).
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

The difference between beryllium hydride and the water molecule lies in the geom-
etry. The typical structure of H2O is not linear but rather bent [20]. This increases
complexity and introduces a second parameter that has to be considered when defin-
ing the geometry: the angle. We used the geometry shown in Figure 3.1. We will
present our results for an internuclear distance of H and O of 0.958Å and an angle
of 104.5◦.

Figure 3.1: The geometry of H2O used in this thesis.

Similarly to BeH2, we expect to find 7 molecular orbitals with the SCF method. In
Table 3.8, you can find our results.

i c1i c2i c3i c4i c5i c6i c7i
1 -0.0059629 -0.0059629 0.9941314 0.0265451 0.0000000 0.0034309 -0.0026565
2 0.1586638 0.1586638 -0.2328152 0.8337809 0.0000000 0.1022689 -0.0791851
3 -0.4450662 0.4450662 0.0000000 0.0000000 0.0000000 0.3712735 0.4795063
4 0.2781705 0.2781705 0.1031473 -0.5366643 0.0000000 0.6139744 -0.4753897
5 0.0000000 0.0000000 0.0000000 0.0000000 -1.0000000 0.0000000 0.0000000
6 -0.7965560 -0.7965560 -0.1322692 0.8833139 0.0000000 0.5869881 -0.4544947
7 0.8379779 - 0.8379779 0.0000000 0.0000000 0.0000000 0.6061462 0.7828486

Table 3.8: Optimized coefficients cνi for H2O at rH−O = 0.958Å and ϕ = 104.5◦(eq.
3.6).

Once again, we see the symmetry of the molecule (2 H atoms) reflected in the atomic
orbital contributions to the molecular orbitals. The coefficients c1i and c2i have the
same values, except for the sign. One more interesting observation is that the only
atomic orbital contributing to the 5th molecular orbital is the px orbital of the
oxygen atom. The px orbital does not contribute to any other molecular orbital.
Looking at Table 3.6 of the optimized BeH2 orbitals, we see a similar phenomenon.
The px and py orbitals of Be behave the same way. They contribute to two molecular
orbitals but not to any others. This may be reflecting the fact that BeH2 bonds
along the z-axis, while H2O bonds in the y-z plane. However, why is H2O bent
while BeH2 is not? This is due to the fact that molecules adopt the configuration
corresponding to the lowest energy state. We will demonstrate that the bonding
angle of H2O is indeed the angle of lowest energy in Chapter 4.2.
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3.2. QUBIT HAMILTONIAN WITH PENNYLANE

As the number of orbitals didn’t change between BeH2 and H2O, the number of
qubits required for the Hamiltonian representation remains the same. We need 14
qubits, which can be reduced to 12 by neglecting the full 1s shell of oxygen. Similar
to the Hamiltonian of BeH2, the Hamiltonian for H2O also has terms with up to 12
Pauli operators. However, due to its length and complexity, we won’t present the
Hamiltonian here, as it wouldn’t significantly enhance understanding. You can find
it in the Appendix.
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4 VQE in quantum chemistry

After constructing the qubit Hamiltonians and molecular orbitals, and verifying
their correctness, we can now present our implementation of the VQE.

4.1 VQE implementation

In Section 2.4, we discussed the theoretical background of the VQE and its general
operation. Now, we will explain how we implemented the VQE using PennyLane
to approximate the ground state energies of H2. We will provide our code and
utilize graphics to demonstrate its proper functionality for a fixed internuclear dis-
tance. After presenting the VQE for H2, we will illustrate its equivalent results to
the ADAPT-VQE, which we employed for the other molecules due to its efficiency.
Furthermore, we will present the resulting optimized quantum circuits for a fixed
distance of all our molecules. In Section 4.2, we will showcase the energy surfaces
of H2, LiH, BeH2, and H2O, which we computed by determining the ground state
energies for various internuclear distances, and angles for H2O, using the VQE for
H2 and ADAPT-VQE for every other molecule. With the aid of these energy sur-
faces, we will define the equilibrium geometries of these molecules.

Let’s begin with the VQE for the hydrogen molecule. The VQE implementation
was inspired by Xanadu’s PennyLane documentation paper [3]. For illustrative pur-
poses, we employed the Hamiltonian presented in Equation 3.2. The corresponding
code can be found in Figure 4.1. It’s important to note that in all the figures from
this point onwards, the qubits are numbered with indices starting from 0, whereas
we previously used notation starting from 1.
Here, the qnode decorator specifies the device on which the quantum circuit runs.
We utilized PennyLane’s built-in ”default.qubit” simulator. For more detailed func-
tionalities of PennyLane, I refer you to the PennyLane documentation([21]). As we
mentioned earlier, 4 qubits are required for Hamiltonian representation as hydrogen
has 4 spin-orbitals, so we use 4 wires in the circuit. It is possible to reduce the num-
ber of qubits by utilizing symmetries (known as Qubit tapering), but we won’t delve
deeper into this theory, as the original number of qubits suffices for our purposes.

We initialize the circuit in the Hartree-Fock state of H2 using PennyLane’s ’Ba-
sisState’ function. Then, we apply a double excitation gate (also via a PennyLane
function), which represents the UCCSD Ansatz for H2. While single excitations are
also present in the Ansatz, the ADAPT-VQE will demonstrate that they are not
essential for energy reduction in the case of H2, thus are neglected here. The double
excitation gate depends on a parameter θ, as shown in Equation 2.38. Subsequently,
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4.1. VQE IMPLEMENTATION

Figure 4.1: VQE for computing the ground state energy of the hydrogen molecule
for a given internuclear distance.

we measure the expectation value of the Hamiltonian in the prepared state using
the method described in Section 2.4.

PennyLane allows computation of gradients with respect to all parameterized
gates in a quantum circuit. Thus, we can compute the gradients of the expectation
value of the Hamiltonian (cost function) with respect to the parameters θ (more
than one for other molecules), allowing the implementation of the Gradient Descent
Optimizer [3].

With the circuit prepared, we optimize the parameter θ using the Gradient De-
scent Optimizer with a step size η of 0.4 (eq. 2.39), starting from the Hartree-Fock
state (initial guess θ = 0). The choice of step size is based on the paper by Xanadu
[3], and a comparison with Pia Döring’s analysis on the step size for a VQE on
H2 [18]. This step size offers a good trade-off between accuracy and the number
of required iterations. We used 20 iterations to determine the optimal parameter.
Figure 4.2 makes clear that the VQE indeed converges within 20 iteartions.

In Figure 4.2, we plotted the expectation value of the Hamiltonian in the prepared
state (the VQE energy in purple), which depends on the parameter θ. Addition-
ally, we plotted the parameter itself (black curve) to demonstrate that it converges
as well. The convergence values are the minimal energy within the Hartree-Fock
approximated Hamiltonian and the optimal VQE parameter that prepares the dou-
bly excited state, minimizing the energy. We find an optimal parameter value of
θ ≈ 0.2263. This indicates that the ground state of H2 in the minimal basis set
approximation (LCAO + STO-3G) is given by:

G(2)(0.2263)|1100⟩ = cos(0.2263/2) |1100⟩ − sin(0.2263/2) |0011⟩
= 0.994 |1100⟩ − 0.113 |0011⟩

(4.1)

The energy convergence clearly indicates that this is, indeed, the ground state:
The initial state is the Hartree-Fock state |1100⟩ with a Hartree-Fock energy of
EHF = −1.11665Ha for an internuclear distance of rH−H = 0.742Å (marked in
orange in Figure 4.2). The minimum VQE energy is Emin,V QE = −1.13726Ha, cor-
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Figure 4.2: Convergence of the energy and parameter of the VQE for H2 at rH−H =
0.742Å.

responding to the state described in Equation 4.1. Remarkably, this value aligns
perfectly with the exact energy Eexact = −1.13726Ha (marked in green), which
represents the smallest eigenvalue of the Hamiltonian. We computed this exact
energy through diagonalization via Givens-Rotations. Additionally, Figure 4.3 vi-
sually underscores this point by depicting the parameter’s influence on the energy.
It demonstrates that the Hartree-Fock state serves as an excellent approximation
to the ground state, and the optimal parameter yields the lowest energy, surpassing
the Hartree-Fock energy. This underscores the VQE’s consistent and reliable per-
formance.
By replicating this process for Hamiltonians at different internuclear distances,

Figure 4.3: Parameter dependency of the VQE, found minimal parameter/energy
and HF parameter/energy for rH−H = 0.742Å.

we constructed the energy surface of H2 as depicted in Figure 4.4. The discovered
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minimal VQE energies are highlighted in purple. The lowest point on this curve
represents the equilibrium distance between the nuclei (rH−H). We determined an
equilibrium distance of 0.7356Å corresponding to an energy of −1.13731Ha. Also
visible in this figure are the VQE parameters associated with each energy point.
It’s noteworthy that as the distance increases, the parameter also increases, with no
unusual behavior in between.

Figure 4.4: VQE Ground State Energy and Corresponding VQE Parameters vs.
Internuclear Distance. The Equilibrium distance corresponds to the minimal energy.

Figure 4.11 portrays the same dependency over a broader range of distances,
although with fewer data points. The equilibrium distance presented in this figure
corresponds to the one calculated using the more precise representation (Figure 4.4).
We will elaborate on Figure 4.11 later.

Now, let’s compare this to the ADAPT-VQE. The ADAPT-VQE implementa-
tion was also inspired by Xanadu’s PennyLane documentation paper [3] and can be
found in Figure 4.5.

Figure 4.5: ADAPT-VQE for computing the ground state energy of the hydrogen
molecule for a given internuclear distance.
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4.1. VQE IMPLEMENTATION

The circuit initialization and creation are identical, except for the missing excita-
tion gate. Instead, a gate pool is defined, encompassing all the single and double
excitations possible for 4 qubits/spin-orbitals. Since the single excitation gates are
two-qubit gates, we need to specify on which qubits they act. They all depend
on a parameter and are initialized in the Hartree-Fock state (parameters=0). The
most significant difference lies in the optimization process. Here, the ”AdaptiveOp-
timizer” is employed, which performs the same steps we described in Section 2.4. It
applies each of the gates in the gate pool to our initial state (HF-state) and then
selects the gate with the largest gradient for optimization. The fixed parameter then
defines a new initial state. This procedure is repeated until the energy gradient is
sufficiently small (here: < 6 · 10−6).

The optimized state-preparing circuit for rH−H = 0.742Å is displayed in Figure
4.6. The optimized circuit prepares the Hartree-Fock state (M0), then applies one
double excitation gate with θ = 0.23 (rounded here, thus must be the same as for
VQE), and measures the expectation of the Hamiltonian at the end. The two dou-
ble excitations with parameter zero do not change anything, so they are effectively
equivalent to not applying any gate. Importantly, this optimized circuit corresponds
exactly to the one used in the VQE and produces the same ground state energy of
Emin,ADAPT−V QE = −1.13726.

Figure 4.6: With ADAPT-VQE found optimal circuit for the ground state prepara-
tion of the hydrogen molecule for rH−H = 0.742Å.

In the next section, we will use a similar approach to the ADAPT-VQE as shown
in Figure 4.5 for the other molecules to compute their ground state energies at differ-
ent internuclear distances and different internuclear angles (only for H2O). However,
there are a few differences that need to be highlighted here. We will use the geome-
tries that were used to generate the Hamiltonians in Section 3.2.

Each molecule requires a different number of qubits, as mentioned in Section
3.2, and has a different number of electrons, resulting in different Hartree-Fock
states. For example, LiH requires 12 qubits and has 4 electrons, but we neglect
the 2 in the inner 1s shell of lithium, so we are left with 10 qubits and 2 active
electrons. Thus, the Hartree-Fock state is |1, 1, 0, 0, 0, 0, 0, 0, 0, 0 > with a Hartree-
Fock energy of EHF = −7.86269Ha at an internuclear distance of rLi−H = 1.57Å.
Similarly, for BeH2 with 12 qubits and 4 active electrons, the Hartree-Fock state
is |1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 > with an energy of EHF = −15.56010Ha at dis-
tance rBe−H = 1.33Å. For H2O, which also needs 12 qubits but has 8 active
electrons, the Hartree-Fock state is |1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 > with an energy
of EHF = −74.96305Ha at distance rH−O = 0.958Å and angle 104.5◦.
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Furthermore, the UCCSD Ansatz for those molecules contains many more single
and double excitations because we need to account for excitations acting on all pos-
sible qubits. This means that the operator pool contains many more gates, making
the programs resource-intensive. To still be able to compute the ground states for
multiple geometries in a reasonable time, we therefore terminate the procedure ear-
lier than for H2. For LiH and BeH2, we stop at an energy gradient of < 3 · 10−3,
and for H2O, we stop at a gradient of < 1 · 10−2, which proves to be sufficient.

The optimized circuits for preparing the ground states of the molecules LiH,
BeH2, and H2O can be found in Figures 4.7, 4.8, and 4.9, respectively. These cir-
cuits are shown for the mentioned geometries. ”M0” represents the initial state,
which is the Hartree-Fock state, ”n” is the number of iterations needed until the
gradient is small enough, and ”Largest Gradient” is the gradient of the gate con-
tributing the most to the energy change. You can see that these gradients satisfy
our termination criterion. Furthermore, the ground state energies found are shown,
and they all lie below the Hartree-Fock energies, as expected. It’s evident that the
more electrons a molecule has, the more gates need to be applied to reach the ground
state. Additionally, you can observe that for all three of these molecules, a variety
of single and double excitations, acting on different qubits with different optimized
parameters, are applied.

Figure 4.7: With ADAPT-VQE found optimal circuit for the ground state prepara-
tion of LiH for rLi−H = 1.57Å.

For completeness, we furthermore tested how the ADAPT-VQE would work in
the case of LiH if we would use all 12 qubits, instead of neglecting the first 2.
The output circuit is depicted in Figure 4.10. You can see that the ADAPT-VQE
requires almost double as many iterations, and the circuits are obviously not the
same. Nevertheless, most of the gates here do not involve the first two qubits,
which we neglected previously. The gates not involving the first two qubits also
mostly align with the ones in the circuit in Figure 4.7. The resulting energy has a
difference in the 4th digit, which is a good trade-off between accuracy and efficiency.
This underlines that neglecting these two qubits does not affect our calculations too
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Figure 4.8: With ADAPT-VQE found optimal circuit for the ground state prepara-
tion of BeH2 for rBe−H = 1.33Å.

much, but it reduces computational costs.
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Figure 4.9: With ADAPT-VQE found optimal circuit for the ground state prepara-
tion of H2O for rH−O = 0.958Å and angle 104.5◦.
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Figure 4.10: With ADAPT-VQE found optimal circuit for the ground state prepa-
ration of LiH for rLi−H = 1.57Å using 12 qubits.
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4.2 Energy surfaces of different molecules

Finally, we want to present the energy surfaces of our molecules, created with the
VQE, and determine the ground state geometries by identifying the configurations
with minimal energy. To ensure the reliability of our algorithm, we will compare
three methods. The primary focus will be on the energies calculated with the VQE
(labeled as ”my VQE energies” and colored purple). These will be compared to the
energies obtained by the VQE without applying any excitation gate, representing the
Hartree-Fock state (”Hamiltonian expval in HF-state,” colored orange), and to the
lowest eigenvalue of the Hamiltonians, which is determined through diagonalization
using Givens-Rotations (”lowest eigval of diagonalized Hamiltonian”, colored green).

At the end of each section, we will also compare our results with the existing
literature. In our plots, we will mark the equilibrium positions, which correspond to
the locations of minimal energies, for both the VQE energies and the Hartree-Fock
energies.

4.2.1 Hydrogen molecule - H2

The energy surface for the hydrogen molecule is depicted in Figure 4.11. We cal-
culated the energies for internuclear distances ranging from 0.2Å to 4Å. The found
equilibrium distance is rH−H = 0.7356Å, corresponding to an energy of −1.13731Ha,
as described in section 4.1.

The curve behaves as expected: For small internuclear distances, the energy di-
verges, indicating that pressing the atoms together requires energy, and it is not
possible to bring them closer easily after a certain internuclear distance is reached.
This is logical because bringing two atoms closer after a certain point means that
the nuclei are pressed together. Since we neglected any nuclear forces in our model
(which are important for fusion) and only included Coulomb forces, the repulsive
force due to their positive charge becomes extremely strong as nuclei get closer to
each other, following Coulomb’s law. This force cannot be overcome. Furthermore
minimum is present in the curve, defining the equilibrium.

The energy converges for large internuclear distances, meaning that by tearing
the two H atoms apart, the entanglement between them decreases until they form
two separate systems. The energy is then just the sum of both atomic ground state
energies, which does not change as the nuclei are further torn apart.

It is evident that our claim that the Hartree-Fock energy is a good approximation
for the equilibrium distance holds true. The Hartree-Fock energies and the VQE
energies in this figure match quite well around equilibrium. However, for larger
internuclear distances, they diverge. This reflects the fact that Hartree-Fock is not
a good approximation for large distances because it assumes that the two electrons
occupy two different spin orbitals due to the Pauli principle. For large distances,
the Pauli principle does not hold, as the two atoms form two separate systems, each
with one electron, which can then occupy the lowest atomic spin-orbital in both.

41



4.2. ENERGY SURFACES OF DIFFERENT MOLECULES

Nevertheless, the Hartree-Fock and VQE energies also don’t match exactly around
equilibrium. This is better visible in Figure 4.12, which is a zoomed-in version of
Figure 4.11 around equilibrium. The Hartree-Fock energies are consistently higher,
as they should be because they represent an upper limit. Furthermore, the equilib-
rium distance found with the Hartree-Fock energies is shifted to the left compared
to the equilibrium found with the VQE, indicating a slightly stronger bond.

However, the exact energies match perfectly with the VQE energies, underlining
the success of our VQE.

Figure 4.11: VQE Ground State Energy, lowest Hamiltonian eigenvalue, and HF-
energy vs. Internuclear Distance for H2. The Equilibrium distance corresponds to
the minimal energy. The simulation was made with 4 qubits.
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Figure 4.12: zoomed version of Figure 4.11. VQE Ground State Energy, lowest
Hamiltonian eigenvalue, and HF-energy vs. Internuclear Distance for H2 around
the Equilibrium. The Equilibrium distance corresponds to the minimal energy. The
Equilibrium distance corresponds to the minimal energy.

Figure 4.13: Energy surface of H2 taken from IBM paper: Experimental results
(black circles), exact energy surfaces (dotted lines) and density plots of outcomes
from numerical simulations, for a number of interatomic distances. The top insets
highlight the qubits used for the experiment. The bottom insets of each figure are
representations of the molecular geometry, not drawn to scale. (source: [22])

A similar plot, created by IBM and presented in the paper [22], is shown in
Figure 4.13. IBM used only two qubits for this simulation and also shows exact
and experimental values. The exact values were simulated classically, while the
experimental ones were obtained using real quantum hardware. This is in contrast
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to our approach, which relies on a simulator. The dashed curve represents a classical
simulation of quantum hardware, which aligns with our methodology. Similar to
our approach, IBM also employed the STO-3G approximation for modeling atomic
orbitals. Comparing this energy surface to ours shows that all the curves match.
The equilibrium for both, IBM’s and our results, lies around 0.7Å, with an energy
of approximately −1.1 Ha, and the energy starts to converge at a distance of about
2Å to a value between -0.8 Ha and -1 Ha.
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4.2.2 Lithium hydride - LiH

The same plots were created for LiH. Figure 4.14 displays the full version, while
Figure 4.15 provides a zoomed-in view around the equilibrium point. We observe
here the same trends as we did for H2: The curve behaves as expected, and the
Hartree-Fock and VQE energies are closely matching around the equilibrium and
diverging for larger distances. Furthermore, the exact energies align with the VQE
energies.

The determined equilibrium distance is 1.56Å with an energy of −7.8824Ha.

Figure 4.14: VQE Ground State Energy, lowest Hamiltonian eigenvalue, and HF-
energy vs. Internuclear Distance for LiH. The Equilibrium distance corresponds to
the minimal energy. The simulation was made with 10 qubits.

We can compare these figures with Figure 4.16 from IBM (source: [22]). For
LiH, IBM used 4 qubits and shows exact and experimental values. The exact and
experimental values of LiH by IBM don’t align perfectly, but the simulator values
and the experimental ones do. One interesting and unexpected feature is that a
bump appears at a distance of around 2.8Å. After investigating Figure 4.13 once
more, it becomes clear that the bump is also present but much smaller in the H2

energy surface. Furthermore, the experimental data (black dots) are consistently
above the exact values.

An explanation for the bumps is given by Artur Izmaylov in [23]. He claims that
it is a result of symmetry breaking. Since we do not reproduce this unwanted bump,
we will not explain it further.

Comparing the exact energy surface to ours shows that the curves match much
better than the experimental and exact curve of IBM. Our equilibrium with a dis-
tance of 1.56Å and an energy of −7.8824Ha matches the minimum of the exact
curve, while the minimum of IBM’s experimental data is shifted to the right and
the energy is observably higher. Furthermore, the convergence of our energies for
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Figure 4.15: zoomed version of Figure 4.14. VQE Ground State Energy, lowest
Hamiltonian eigenvalue, and HF-energy vs. Internuclear Distance for LiH around
the Equilibrium. The Equilibrium distance corresponds to the minimal energy. The
Equilibrium distance corresponds to the minimal energy. The simulation was made
with 10 qubits.

large internuclear distances matches with that of IBM’s exact values.

The fact that IBM’s experimental data (black dots) are consistently above the
exact values could result from the fact that their state preparation circuit does not
have enough gates, meaning that their VQE iterations were not sufficient. Thus, we
could produce a more precise energy surface.
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Figure 4.16: Energy surface of LiH taken from IBM paper: Experimental results
(black circles), exact energy surfaces (dotted lines) and density plots of outcomes
from numerical simulations, for a number of interatomic distances. The top insets
highlight the qubits used for the experiment. The bottom insets of each figure are
representations of the molecular geometry, not drawn to scale.(source: [22])

4.2.3 Beryllium hydride - BeH2 - 1 dimensional

The full BeH2 energy surface plots for internnuclear distances from 0.5Å to 4Å
can be found in Figure 4.17, with a zoomed-in version shown in Figure 4.18. As
expected, all the energies behave as anticipated. The VQE energies and the exact
energies align well for distances up to 2.5Å, while the Hartree-Fock energies behave
similarly to those for H2 and LiH, being close to the VQE energies for distances near
equilibrium and diverging for larger ones. A significant difference here is that the
VQE and exact energies no longer align well for distances greater than 2.5Å to 3Å.
This results in the VQE energies not converging for large distances anymore, which
contradicts the physical intuition that the three atoms should become independent
of each other for large distances. Given that the exact and VQE energies only differ
significantly for large distances, it appears that there is a distance-dependent issue
occuring.

A notable observation is that for the internuclear distance of 4Å, the difference
between the exact energy and the Hartree-Fock energy for H2 and LiH was at most
0.5Ha, while for BeH2, the difference is more than double that amount. As the
Hartree-Fock approximation becomes a less accurate guess for larger distances, this
might be the source of the problem. It’s possible that our initial state is too far from
the actual ground state in the case of BeH2, causing our algorithm to converge to
a local minimum. The initial state was adequate for the distance of 3Å and for the
other molecules, but it seems to be problematic for BeH2 at larger distances.
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Further investigation could involve exploring the dependency of the VQE energy
for BeH2 at 4Å on the initial state. Unfortunately, due to time constraints, we
were unable to pursue this investigation in this thesis. Nonetheless, it presents an
intriguing problem worthy of exploration.

Figure 4.17: VQE Ground State Energy, lowest Hamiltonian eigenvalue, and HF-
energy vs. Internuclear Distance for BeH2. The Equilibrium distance corresponds
to the minimal energy. The simulation was made with 12 qubits.

This issue does not seem to be present in IBM’s energy surface. IBM employed
six qubits for the BeH2 molecule and provided once again a figure with both ex-
act and experimental values, which do not align perfectly (Figure 4.19). However,
considering the single discrepancy in our energies, specifically the VQE energy for
the internuclear distance of 4Å, we will omit this point and focus on comparing the
remaining data to that of IBM’s, as it remains unaffected by that point.

Our equilibrium corresponds to an internuclear distance of 1.33Å and an en-
ergy of −15.5944Ha. Remarkably, IBM’s exact data aligns with ours, affirming the
accuracy of our data when disregarding large distances.
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Figure 4.18: zoomed version of Figure 4.17. VQE Ground State Energy, lowest
Hamiltonian eigenvalue, and HF-energy vs. Internuclear Distance for BeH2 around
the Equilibrium. The Equilibrium distance corresponds to the minimal energy. The
Equilibrium distance corresponds to the minimal energy. The simulation was made
with 12 qubits.

Figure 4.19: Energy surface of BeH2 taken from IBM paper: Experimental results
(black circles), exact energy surfaces (dotted lines) and density plots of outcomes
from numerical simulations, for a number of interatomic distances. The top insets
highlight the qubits used for the experiment. The bottom insets of each figure are
representations of the molecular geometry, not drawn to scale.(source: [22])
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4.2.4 Water molecule - H2O - 2 dimensional

The last molecule we aim to investigate is the water molecule (H2O). As previ-
ously mentioned, the equilibrium geometry of water includes an angle between the
three atoms. Our goal is to verify that this angle represents the equilibrium geome-
try and determine the equilibrium distance between the hydrogen and oxygen atoms.

Figure 4.20 displays the full plot illustrating the dependency of VQE energies
on the internuclear distance (rH−O) and the angle between the three atoms (ϕ) for
the water molecule. Similar to previous molecules, we’ve plotted the VQE energies,
exact energies, and Hartree-Fock energies. This was done for internuclear distances
from 0.2Å to 4Å and for the three angles 80◦, 104.5◦, and 120◦. Additionally, we’ve
marked the equilibrium determined by the VQE energies and the equilibrium deter-
mined by the Hartree-Fock energies. To facilitate a more detailed examination of
this plot, we’ve provided an alternative view in Figure 4.21 and a zoomed-in version
in Figure 4.23.

The alternative view in Figure 4.21 focuses solely on the internuclear distance
dependency of the energies. Similar to the behavior observed for BeH2, the VQE
energies align closely with the exact values up to a distance of 3Å. However, at a
distance of 4Å, the exact and VQE energies begin to deviate. As mentioned earlier,
this issue likely stems from the same distant-dependent problem that was encoun-
tered with BeH2.

Figure 4.22 depicts the dependence of ground state energies for H2O on internu-
clear distance, as calculated in paper [24]. In this paper, the energies were computed
using the QCC (Qubit Coupled Cluster) Ansatz, which is similar to the UCC (Uni-
tary Coupled Cluster) Ansatz, but acting directly in the qubit space, reducing the
required gate count. Since UCC and QCC are not directly comparable, our focus
will be on comparing them with the Exact curve and the QMF (Quantum Mean
Field) curve, which corresponds to the Hartree-Fock energies.

Upon comparing the internuclear distance dependence of our VQE energies to
the exact energies shown in Figure 4.13, we observe that the equilibrium distance
aligns closely, approximately at 1Å. Comparing Figure 4.22 to Figure 4.23, we fur-
thermore see that the Hartree-Fock energies rise more rapidly than the VQE energies
at distances around 1Å for both. It’s worth noting that the paper introduced an ad-
ditional symmetry constraint to ensure that the Hartree-Fock energies do not break
symmetries, which was not necessary in our approach.

In Figure 4.23, the energy landscape is depicted more clearly. It becomes evi-
dent that the equilibrium determined by the VQE energies corresponds to the actual
lowest point in the energy landscape. On the other hand, the equilibrium defined
by the Hartree-Fock energies may be the lowest for those energies but does not
represent the true equilibrium of the system. Within the depicted distance range,
the exact energies and VQE energies closely match, while the Hartree-Fock energies
consistently register as higher. The equilibrium geometry we discover is defined by
an internuclear distance of rH−O = 1.02Å and an angle of ϕ = 104.5◦.
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Therefore, we have successfully demonstrated that H2O indeed favors a bent
configuration of its constituent atoms.

Figure 4.20: VQE Ground State Energy, lowest Hamiltonian eigenvalue, and HF-
energy vs. Internuclear Distance and angle for H2. The Equilibrium distance corre-
sponds to the minimal energy. The simulation was made with 12 qubits.
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Figure 4.21: VQE Ground State Energy, lowest Hamiltonian eigenvalue, and HF-
energy vs. Internuclear Distance and angle for H2. The Equilibrium distance corre-
sponds to the minimal energy. The simulation was made with 12 qubits.

Figure 4.22: Potential energy curves for the symmetric stretch of the water molecule
(source: [H2O˙referece]).
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Figure 4.23: zoomed version of Figure 4.20. VQE Ground State Energy, lowest
Hamiltonian eigenvalue, and HF-energy vs. Internuclear Distance and angle for
H2O around the Equilibrium. The Equilibrium distance corresponds to the min-
imal energy. The Equilibrium distance corresponds to the minimal energy. The
simulation was made with 12 qubits.
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5 Conclusion

In this thesis, we’ve explored the capabilities of Quantum Variational Eigensolver
(VQE) algorithms in the domain of quantum chemistry. Our primary focus was
on understanding the ground state properties and energy landscapes of several
molecules, including H2, LiH, BeH2, and H2O.

Starting with the simplest molecule, H2, VQE demonstrated its effectiveness in
reproducing the molecule’s equilibrium distance and associated energy. Our com-
parisons with IBM’s simulations, which used real quantum hardware instead of a
simulator, validated the reliability of our VQE-based approach.

Moving on to more complex molecules, we successfully applied VQE to LiH,
BeH2, and H2O. Despite the added complexity, we accurately determined their
equilibrium geometries and energies, contributing to our understanding of these
molecules’ behavior.

However, we also noticed discrepancies in the VQE energy surfaces for BeH2

and H2O at larger internuclear distances, raising questions about the choice of ini-
tial states for large internuclear distances in our approach.

In conclusion, this thesis highlights the potential of VQE in modeling molecular
structures and energy landscapes. While VQE proved effective in capturing ground
states for various molecules, challenges remain, particularly concerning big internu-
clear distances. This work offers insights into the evolving capabilities of quantum
technologies and their applications in understanding molecular systems.
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A Qubit Hamiltonians

The qubit numbering in the output of our program uses a convention that is shifted
by one. This means that, for example, qubit 0 here corresponds to qubit 1 in the
thesis.

A.1 LiH

(a) (b)

Figure A.1: qubit Hamiltonian of LiH for rLi−H = 1.57Å. Part 1
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A.1. LiH

(a) (b)

Figure A.2: qubit Hamiltonian of LiH for rLi−H = 1.57Å. Part 2
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A.1. LiH

(a) (b)

Figure A.3: qubit Hamiltonian of LiH for rLi−H = 1.57Å. Part 3
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A.2. BeH2

A.2 BeH2

(a) (b)

Figure A.4: qubit Hamiltonian of BeH2 for rBe−H = 1.33Å. Part 1

60



A.2. BeH2

(a) (b)

Figure A.5: qubit Hamiltonian of BeH2 for rBe−H = 1.33Å. Part 2
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A.2. BeH2

(a) (b)

Figure A.6: qubit Hamiltonian of BeH2 for rBe−H = 1.33Å. Part 3

Figure A.7: qubit Hamiltonian of BeH2 for rBe−H = 1.33Å. Part 4
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A.3. H2O

A.3 H2O

(a) (b)

Figure A.8: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 1
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A.3. H2O

(a) (b)

Figure A.9: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 2
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A.3. H2O

(a) (b)

Figure A.10: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 3
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A.3. H2O

(a) (b)

Figure A.11: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 4
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A.3. H2O

(a) (b)

Figure A.12: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 5
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A.3. H2O

Figure A.13: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 6

Figure A.14: qubit Hamiltonian of H2O for rH−O = 0.958Å and ϕ = 104.5◦. Part 7
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