001018223 001__ 1018223
001018223 005__ 20240116084324.0
001018223 0247_ $$2doi$$a10.1109/LGRS.2023.3329428
001018223 0247_ $$2ISSN$$a1545-598X
001018223 0247_ $$2ISSN$$a1558-0571
001018223 0247_ $$2WOS$$aWOS:001105671500009
001018223 037__ $$aFZJ-2023-04619
001018223 082__ $$a550
001018223 1001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b0$$ufzj
001018223 245__ $$aToward the Production of Spatiotemporally Consistent Annual Land Cover Maps Using Sentinel-2 Time Series
001018223 260__ $$aNew York, NY$$bIEEE$$c2023
001018223 3367_ $$2DRIVER$$aarticle
001018223 3367_ $$2DataCite$$aOutput Types/Journal article
001018223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702461048_490
001018223 3367_ $$2BibTeX$$aARTICLE
001018223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018223 3367_ $$00$$2EndNote$$aJournal Article
001018223 520__ $$aLand cover (LC) maps generated by the classification of remote-sensing (RS) data allow for monitoring Earth processes and the dynamics of objects and phenomena. For accurate LC variability quantification in environmental monitoring, maps need to be spatiotemporally consistent, continually updated, and indicate permanent changes. However, producing frequent and spatiotemporally consistent LC maps is challenging because it involves balancing the need for temporal consistency with the risk of missing real changes. In this work, we propose a scalable and semiautomatic method for generating annual LC maps with labels that are consistently applied from one year to the next. It uses a Transformer deep-learning (DL) model as a classifier, which is trained on satellite time series (TS) of images using high performance computing (HPC). The trained model can generate stable maps by shifting the prediction window along the temporal direction. The effectiveness of the proposed approach is tested qualitatively and quantitatively on a multiannual Sentinel-2 dataset acquired over a three-year period in a study area located in the southern Italian Alps.
001018223 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001018223 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001018223 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x2
001018223 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x3
001018223 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018223 7001_ $$0P:(DE-HGF)0$$aParis, Claudia$$b1
001018223 7001_ $$0P:(DE-Juel1)187002$$aEbert, Jan$$b2
001018223 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b3$$ufzj
001018223 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b4$$eCorresponding author
001018223 773__ $$0PERI:(DE-600)2138738-2$$a10.1109/LGRS.2023.3329428$$gVol. 20, p. 1 - 5$$p1 - 5$$tIEEE geoscience and remote sensing letters$$v20$$x1545-598X$$y2023
001018223 8564_ $$uhttps://juser.fz-juelich.de/record/1018223/files/Invoice_APC600474603.pdf
001018223 8564_ $$uhttps://juser.fz-juelich.de/record/1018223/files/Toward_the_Production_of_Spatiotemporally_Consistent_Annual_Land_Cover_Maps_Using_Sentinel-2_Time_Series.pdf$$yRestricted
001018223 8767_ $$8APC600474603$$92023-11-17$$a1200198331$$d2023-11-22$$ePage charges$$jZahlung erfolgt$$zUSD 400,-
001018223 909CO $$ooai:juser.fz-juelich.de:1018223$$popenCost$$pec_fundedresources$$pOpenAPC$$pVDB$$popenaire
001018223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b0$$kFZJ
001018223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187002$$aForschungszentrum Jülich$$b2$$kFZJ
001018223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b3$$kFZJ
001018223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b4$$kFZJ
001018223 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001018223 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001018223 9141_ $$y2023
001018223 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001018223 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001018223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE GEOSCI REMOTE S : 2022$$d2023-10-25
001018223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001018223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001018223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001018223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001018223 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001018223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
001018223 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001018223 980__ $$ajournal
001018223 980__ $$aVDB
001018223 980__ $$aI:(DE-Juel1)JSC-20090406
001018223 980__ $$aAPC
001018223 980__ $$aUNRESTRICTED
001018223 9801_ $$aAPC