001     1018223
005     20240116084324.0
024 7 _ |a 10.1109/LGRS.2023.3329428
|2 doi
024 7 _ |a 1545-598X
|2 ISSN
024 7 _ |a 1558-0571
|2 ISSN
024 7 _ |a WOS:001105671500009
|2 WOS
037 _ _ |a FZJ-2023-04619
082 _ _ |a 550
100 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 0
|u fzj
245 _ _ |a Toward the Production of Spatiotemporally Consistent Annual Land Cover Maps Using Sentinel-2 Time Series
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702461048_490
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Land cover (LC) maps generated by the classification of remote-sensing (RS) data allow for monitoring Earth processes and the dynamics of objects and phenomena. For accurate LC variability quantification in environmental monitoring, maps need to be spatiotemporally consistent, continually updated, and indicate permanent changes. However, producing frequent and spatiotemporally consistent LC maps is challenging because it involves balancing the need for temporal consistency with the risk of missing real changes. In this work, we propose a scalable and semiautomatic method for generating annual LC maps with labels that are consistently applied from one year to the next. It uses a Transformer deep-learning (DL) model as a classifier, which is trained on satellite time series (TS) of images using high performance computing (HPC). The trained model can generate stable maps by shifting the prediction window along the temporal direction. The effectiveness of the proposed approach is tested qualitatively and quantitatively on a multiannual Sentinel-2 dataset acquired over a three-year period in a study area located in the southern Italian Alps.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 2
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Paris, Claudia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ebert, Jan
|0 P:(DE-Juel1)187002
|b 2
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 3
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 4
|e Corresponding author
773 _ _ |a 10.1109/LGRS.2023.3329428
|g Vol. 20, p. 1 - 5
|0 PERI:(DE-600)2138738-2
|p 1 - 5
|t IEEE geoscience and remote sensing letters
|v 20
|y 2023
|x 1545-598X
856 4 _ |u https://juser.fz-juelich.de/record/1018223/files/Invoice_APC600474603.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1018223/files/Toward_the_Production_of_Spatiotemporally_Consistent_Annual_Land_Cover_Maps_Using_Sentinel-2_Time_Series.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1018223
|p openaire
|p VDB
|p OpenAPC
|p ec_fundedresources
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187002
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE GEOSCI REMOTE S : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21