001018238 001__ 1018238 001018238 005__ 20250204113738.0 001018238 0247_ $$2doi$$a10.1038/s41567-023-02262-6 001018238 0247_ $$2ISSN$$a1745-2473 001018238 0247_ $$2ISSN$$a1745-2481 001018238 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04634 001018238 0247_ $$2WOS$$aWOS:001087870100001 001018238 037__ $$aFZJ-2023-04634 001018238 082__ $$a530 001018238 1001_ $$0P:(DE-HGF)0$$aFriedrich, Felix$$b0 001018238 245__ $$aEvidence for spinarons in Co adatoms 001018238 260__ $$aBasingstoke$$bNature Publishing Group$$c2024 001018238 3367_ $$2DRIVER$$aarticle 001018238 3367_ $$2DataCite$$aOutput Types/Journal article 001018238 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705398238_28112 001018238 3367_ $$2BibTeX$$aARTICLE 001018238 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001018238 3367_ $$00$$2EndNote$$aJournal Article 001018238 520__ $$aCobalt atoms on the (111) surfaces of noble metals are considered to be prototypical systems for the Kondo effect in scanning tunnelling microscopy experiments. Recent first-principles calculations, however, suggest that the experimentally observed spectroscopic zero-bias anomaly can be interpreted in terms of excitations of the spin of the Co atom and the formation of a novel many-body state, namely, the spinaron, rather than from a Kondo resonance. The spinaron is a magnetic polaron that results from the interaction of spin excitations with conduction electrons. However, the experimental confirmation for the existence of spinarons remains elusive. Here we present experimental evidence for spinaronic states in Co atoms on the Cu(111) surface. Our spin-averaged and spin-polarized scanning tunnelling spectroscopy measurements in high magnetic fields allow us to discriminate between the different existing theoretical models and to invalidate the prevailing Kondo-based interpretation of the zero-bias anomaly. Our extended ab initio calculations instead suggest the presence of multiple spinaronic states. Thus, our work provides the foundation to explore the characteristics and consequences of these intriguing hybrid many-body states as well as their design in artificial nanostructures. 001018238 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001018238 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1 001018238 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001018238 7001_ $$0P:(DE-HGF)0$$aOdobesko, Artem$$b1$$eCorresponding author 001018238 7001_ $$0P:(DE-Juel1)157840$$aBouaziz, Juba$$b2 001018238 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author$$ufzj 001018238 7001_ $$0P:(DE-HGF)0$$aBode, Matthias$$b4 001018238 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-023-02262-6$$p28-33$$tNature physics$$v20$$x1745-2473$$y2024 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/2306.16084.pdf$$yOpenAccess 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/s41567-023-02262-6-1.pdf$$yRestricted 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/2306.16084.gif?subformat=icon$$xicon$$yOpenAccess 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/2306.16084.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/2306.16084.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/2306.16084.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/s41567-023-02262-6-1.gif?subformat=icon$$xicon$$yRestricted 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/s41567-023-02262-6-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/s41567-023-02262-6-1.jpg?subformat=icon-180$$xicon-180$$yRestricted 001018238 8564_ $$uhttps://juser.fz-juelich.de/record/1018238/files/s41567-023-02262-6-1.jpg?subformat=icon-640$$xicon-640$$yRestricted 001018238 909CO $$ooai:juser.fz-juelich.de:1018238$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 001018238 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Julius-Maximilians-Universität Würzburg, Würzburg, Germany$$b0 001018238 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Julius-Maximilians-Universität Würzburg, Würzburg, Germany$$b1 001018238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157840$$aForschungszentrum Jülich$$b2$$kFZJ 001018238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ 001018238 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130805$$a Faculty of Physics, University of Duisburg-Essen and CENIDE, Duisburg, Germany$$b3 001018238 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aWilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Julius-Maximilians-Universität Würzburg, Würzburg, Germany$$b4 001018238 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Julius-Maximilians-Universität Würzburg, Würzburg, Germany$$b4 001018238 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001018238 9141_ $$y2024 001018238 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25 001018238 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-25$$wger 001018238 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001018238 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25 001018238 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger 001018238 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2022$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11 001018238 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2022$$d2024-12-11 001018238 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001018238 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1 001018238 980__ $$ajournal 001018238 980__ $$aVDB 001018238 980__ $$aUNRESTRICTED 001018238 980__ $$aI:(DE-Juel1)PGI-1-20110106 001018238 980__ $$aI:(DE-Juel1)IAS-1-20090406 001018238 9801_ $$aFullTexts