001     1018243
005     20250204113738.0
024 7 _ |a 10.1016/j.scriptamat.2023.115852
|2 doi
024 7 _ |a 1359-6462
|2 ISSN
024 7 _ |a 1872-8456
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04639
|2 datacite_doi
024 7 _ |a WOS:001161533200001
|2 WOS
037 _ _ |a FZJ-2023-04639
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Ebert, Julian
|0 P:(DE-Juel1)187107
|b 0
|e Corresponding author
245 _ _ |a Bulk and grain boundary conductivity in doped BaZrO3: Bulk contribution dominates at operating temperatures
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721825311_4165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Paper ist Gold Open AccessWeitere Grants sind:Emmy Noether Programme under contract no. Rh 146/1–1Helmholtz Association of German Research Centers (HGF) and the Federal Ministry of Education and Research (BMBF), Innovation Pool project “Solar H2: Highly Pure and Compressed”
520 _ _ |a This study evaluates the role of microstructure for the conductivity of BaZrO3-based protonic conductors. Bulk conductivity was found to be the limiting conductivity contribution in BaZr0.8Y0.2O3-δ (BZY20) and BaZr0.7Ce0.2Y0.1O3-δ (BZCY72) at operating temperatures. The effective grain boundary conductivity only dominates the total conductivity below a crossover point (200 °C for BZY20, 150 °C for BZCY72). The crossover point was determined by using a well-calibrated electrochemical impedance spectroscopy setup to measure from 600 °C to 50 °C with up to 10 MHz. As such, bulk and grain boundary could be fitted separately up to 350 °C instead of 200 °C, as often seen in literature. According to these results, the impact of grain boundaries on the total conductivity of BZY20 and BZCY72 at operating temperature might be less than assumed. Therefore, research should not only focus on increasing the conductivity of the grain boundary, but also on maximizing the bulk conductivity.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SFB 1548 B04 - Einfluss der grundlegenden elektronischen Struktur auf die Korngrenzeigenschaften in oxidischen Perowskiten (B04) (513417808)
|0 G:(GEPRIS)513417808
|c 513417808
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jennings, Dylan
|0 P:(DE-Juel1)190607
|b 1
700 1 _ |a Schäfer, Laura-Alena
|0 P:(DE-Juel1)187594
|b 2
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 3
700 1 _ |a Rheinheimer, Wolfgang
|0 P:(DE-Juel1)185039
|b 4
773 _ _ |a 10.1016/j.scriptamat.2023.115852
|g Vol. 241, p. 115852 -
|0 PERI:(DE-600)2015843-9
|p 115852 -
|t Scripta materialia
|v 241
|y 2024
|x 1359-6462
856 4 _ |u https://juser.fz-juelich.de/record/1018243/files/Invoice_OAD0000363129.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1018243/files/1-s2.0-S1359646223005730-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018243
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187107
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185039
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCRIPTA MATER : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCRIPTA MATER : 2022
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21