001018251 001__ 1018251
001018251 005__ 20250701125847.0
001018251 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04647
001018251 037__ $$aFZJ-2023-04647
001018251 041__ $$aEnglish
001018251 1001_ $$0P:(DE-Juel1)192187$$aFaatz, Nicolas$$b0$$eCorresponding author$$ufzj
001018251 1112_ $$a25th International Spin Symposium$$cDurham$$d2023-09-24 - 2023-09-29$$gSPIN2023$$wUSA
001018251 245__ $$aFirst test of a polarized $^3$He$^+$ ion source
001018251 260__ $$c2023
001018251 3367_ $$033$$2EndNote$$aConference Paper
001018251 3367_ $$2DataCite$$aOther
001018251 3367_ $$2BibTeX$$aINPROCEEDINGS
001018251 3367_ $$2DRIVER$$aconferenceObject
001018251 3367_ $$2ORCID$$aLECTURE_SPEECH
001018251 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1700559356_20078$$xAfter Call
001018251 502__ $$cRWTH Aachen
001018251 520__ $$aThe use of polarized $^3$He ions in storage rings opens a new window to investigate nuclear forces, because the spin-dependent part of the differential cross section of the observed reactions must stem in first order from the neutron spin. Thus, nuclear polarized $^3$He$^{2+}$ beams can be regarded as an ideal substitute for polarized neutron beams. Polarized $^3$He ions were used in the 1960’s, but either the nuclear polarization and/or the usable intensity of the corresponding ion sources was rather small. Since then, several groups around the world have been working on the realization of an efficient polarized $^3$He ion source for injection into storage rings. Current concepts are based on the rapid ionization of optically-pumped polarized $^3$He gas with polarization values up to 0.8. Nevertheless, most of the different ionization processes tested so far result in large polarization losses.A new approach at the Institute for Nuclear Physics in the Research Center Jülich promises to overcome the recent limitations with an intense (>10 μA) polarized $^3$He$^{1+}$ beam with a polarization up to P ~ 0.9 that can be used for stripping injection to feed storage rings. The method itself is similar to “optical pumping”, but instead of laser beams single radio-wave pulses are used to induce transitions within the hyperfine substates in the Zeeman region of a $^3$He$^{1+}$ beam at 4 keV. The corresponding photons are coherent and monochromatic, and the induced transitions at an energy level of 10$^{−8}$ eV interfere with each other. Based on this phenomenon, the three substates of the F = 1 state can be pumped into a single substate with $m_F =$ +1 or -1. The corresponding polarization will be measured after acceleration to about 100 MeV due to the known analyzing powers of elastic scattering on protons with an existing polarimeter behind the cyclotron JULIC. In principle, this technique can be expanded to other ions, even heavy ions, and may open the door for a new generation of polarized ion sources or polarized fuel, thus increasing the energy output of future fusion reactors.
001018251 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0
001018251 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x0
001018251 65017 $$0V:(DE-MLZ)GC-2001-2016$$2V:(DE-HGF)$$aNuclei and Particles$$x0
001018251 7001_ $$0P:(DE-Juel1)131141$$aEngels, Ralf W.$$b1$$ufzj
001018251 7001_ $$0P:(DE-Juel1)198732$$aWirtz, Jan$$b2$$ufzj
001018251 7001_ $$0P:(DE-Juel1)131234$$aLehrach, Andreas$$b3$$ufzj
001018251 7001_ $$0P:(DE-Juel1)178627$$aKannis, Chrysovalantis$$b4$$ufzj
001018251 7001_ $$0P:(DE-Juel1)177964$$aZheng, Chuan$$b5$$ufzj
001018251 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b6$$ufzj
001018251 7001_ $$0P:(DE-Juel1)131152$$aFelden, Olaf$$b7$$ufzj
001018251 7001_ $$0P:(DE-Juel1)131170$$aGrigoryev, Kirill$$b8$$ufzj
001018251 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b9$$ufzj
001018251 7001_ $$0P:(DE-Juel1)192187$$aFaatz, Nicolas$$b10$$ufzj
001018251 7001_ $$0P:(DE-Juel1)131164$$aGebel, Ralf$$b11$$ufzj
001018251 7001_ $$0P:(DE-Juel1)201229$$aPütz, Simon Jakob$$b12$$ufzj
001018251 8564_ $$uhttps://juser.fz-juelich.de/record/1018251/files/Talk.3He%2B.pptx$$yOpenAccess
001018251 909CO $$ooai:juser.fz-juelich.de:1018251$$pdriver$$pVDB$$popen_access$$popenaire
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192187$$aForschungszentrum Jülich$$b0$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131141$$aForschungszentrum Jülich$$b1$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198732$$aForschungszentrum Jülich$$b2$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b3$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178627$$aForschungszentrum Jülich$$b4$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177964$$aForschungszentrum Jülich$$b5$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b6$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131152$$aForschungszentrum Jülich$$b7$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131170$$aForschungszentrum Jülich$$b8$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b9$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192187$$aForschungszentrum Jülich$$b10$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131164$$aForschungszentrum Jülich$$b11$$kFZJ
001018251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201229$$aForschungszentrum Jülich$$b12$$kFZJ
001018251 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0
001018251 9141_ $$y2023
001018251 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018251 920__ $$lyes
001018251 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
001018251 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x1
001018251 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x2
001018251 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x3
001018251 9201_ $$0I:(DE-Juel1)VDB521$$kIKP-TA$$lInstitut für Kernphysik - Technische und administrative Infrastruktur$$x4
001018251 9801_ $$aFullTexts
001018251 980__ $$aconf
001018251 980__ $$aVDB
001018251 980__ $$aUNRESTRICTED
001018251 980__ $$aI:(DE-Juel1)IKP-2-20111104
001018251 980__ $$aI:(DE-Juel1)IKP-4-20111104
001018251 980__ $$aI:(DE-Juel1)PGI-6-20110106
001018251 980__ $$aI:(DE-Juel1)ZEA-1-20090406
001018251 980__ $$aI:(DE-Juel1)VDB521
001018251 981__ $$aI:(DE-Juel1)ITE-20250108