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Abstract

A growing body of evidence suggests that conscious perception of a sensory stimulus triggers an all-or-none activ-
ity across multiple cortical areas, a phenomenon called ’ignition’. In contrast, the same stimulus, when undetected,
induces only transient activity. In this work, we report a large-scale model of the macaque cortex based on recently
quantified structural connectome data. We use this model to simulate a detection task, and demonstrate how a dynam-
ical bifurcation mechanism produces ignition-like events in the model network. The model predicts that feedforward
excitatory transmission is primarily mediated by the fast AMPA receptors to ensure rapid signal propagation from
sensory to associative areas. In contrast, a greater proportion of the inter-areal feedback projections and local recurrent
excitation depend on the slow NMDA receptors, to ensure ignition of distributed frontoparietal activity. Our model
predicts, counterintuitively, that fast-responding sensory areas contain a higher ratio of NMDA to AMPA receptors
compared to association cortical areas that show slow, sustained activity. We validate this prediction using in-vitro
receptor autoradiography data. Finally, we show how this model can account for various behavioral and physiologi-
cal effects linked to consciousness. Together, these findings clarify the neurophysiological mechanisms of conscious
access in the primate cortex and support the concept that gradients of receptor densities along the cortical hierarchy
contribute to distributed cognitive functions.

Keywords consciousness - large-scale brain model - connectome - NMDA - AMPA - feedforward - feedback -
computational model - ignition - Global Neuronal Workspace - access consciousness
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Introduction

Among the huge flow of information received by our sensory organs, only a fraction of it is consciously perceived
(James 1890). In many experiments that probe the access of stimuli to consciousness, subjects (human or non-human)
are presented with faint stimuli, and asked to report if they detect them. The relationship between the strength of
the stimulus and whether subjects report its presence is highly non-linear (e.g. Del Cul et al. 2007; Van Vugt et al.
2018). Increasing the brightness of a flashlight will increase the probability of detection, but the stimulus will always
be either reported or missed. Once a stimulus is consciously perceived, an array of cognitive computations can be
performed that are not available for unconsciously perceived stimuli (Sackur and Dehaene 2009; Triibutschek et al.
2019). Although this behavioral phenomenon has been consistently observed across species, the network, cellular
and synaptic mechanisms of conscious access are hotly debated, and largely unresolved (Aru et al. 2020; Baars 2005;
Dehaene et al. 1998; Lamme and Roelfsema 2000; Lau and Rosenthal 2011; Mashour et al. 2020; Tononi 2004).

Several studies have shown that, when a stimulus is consciously detected, activity emerges across many brain areas,
and is sustained for a few hundred milliseconds principally in frontal and parietal cortices (Dehaene et al. 2001; Del
Cul et al. 2007; King and Dehaene 2014; Rees et al. 2002; Sadaghiani et al. 2009; Sergent et al. 2005; Van Vugt et al.
2018). This widely distributed, sudden, and sustained activity has been termed ’ignition’ (Dehaene et al. 1998, 2003).
A common way to investigate ignition is to present a subject with stimuli of different strengths - such as contrast
for visual stimuli. By manipulating the visual contrast, experimenters can identify the threshold for detection - the
stimulus contrast at which stimuli can be detected on roughly 50% of trials (Green and Swets 1966; Nachmias 1981;
Sergent and Dehaene 2003). Many studies have shown that neural activity in early sensory areas grows approximately
linearly with stimulus strength, regardless of whether the stimulus is detected or not (Del Cul et al. 2007; Kouider
et al. 2013; Lafuente and Romo 2005, 2006; Romo and Rossi-Pool 2020; Van Vugt et al. 2018). On the other
hand, activity in fronto-parietal areas, including the dorsolateral prefrontal cortex (dIPFC), shows a late all-or-none
activation (Del Cul et al. 2007; Lafuente and Romo 2005, 2006; Sergent et al. 2005; Van Vugt et al. 2018). The
neural dynamics of unconsciously and consciously perceived stimuli differ. Some authors have described how stimuli
not consciously perceived elicit a chain of dynamically changing neural activity states, while conscious perception
corresponds to the late onset of relatively stable patterns of neural activity (Schurger et al. 2015). Early simulations
of a few interconnected brain areas reproduced this stable activity, but were not built on realistic cortical connectivity
(Dehaene et al. 2003; Dehaene and Changeux 2005). Other studies describe a reliable, but dynamical trajectory
of activity associated with conscious access (Baria et al. 2017; Salti et al. 2015), with the different interpretations
possibly due to analysis of different frequency bands (He 2018). More recent modeling studies based on real cortical
connectivity data have begun to investigate the dynamical propagation of stimulus information into the fronto-parietal
network, but not applied to a detection task (Chaudhuri et al. 2015; Deco et al. 2020; Joglekar et al. 2018). A realistic
large-scale model of the ignition phenomenon would create testable predictions for theories of consciousness; provide
a concrete link between a subjective psychological phenomenon, large scale neural networks and synaptic interactions;
and offer a platform for future simulations of other experimental paradigms.

Several prominent theories of consciousness propose a central role of recurrent synaptic interactions between excita-
tory neurons (Dehaene et al. 2003; Lamme and Roelfsema 2000). However, the timescale of excitatory synaptic inter-
actions differs drastically depending on the type of postsynaptic glutamatergic receptors. The most widely expressed
of these are a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) re-
ceptors. The decay time constant of AMPA receptors is up to 50 times shorter than that of NMDA receptors. The rapid
onset and offset of excitatory currents mediated by AMPA receptors could help sensory areas react quickly to changes
to external stimuli (Self et al. 2012; Yang et al. 2018). Once a stimulus has disappeared, the slow time-constant
of NMDA receptors is crucial for sustaining stimulus-specific activity in prefrontal cortex (Wang et al. 2013; Wang
1999). Differences in receptor expression across cortical areas (Froudist-Walsh et al. 2023; Goulas et al. 2021; Zilles
and Palomero-Gallagher 2017) may contribute to differences in functional capabilities (Froudist-Walsh et al. 2021),
but to replicate distributed cortical activity and function in a large-scale system, we must also consider which type of
connections are mediated by each type of receptor. Indeed, from their inception, the first simulations of ignition in
a global workspace architecture (Dehaene et al. 2003; Dehaene and Changeux 2005) already included a key role for
long-distance recurrent and top-down connections in the maintenance of long-lasting sustained ignition. Furthermore,
the hypothesis was made that those connections, to support slow dynamics, must primarily involve synapses dense in
NMDA receptors. This proposal was later partially supported experimentally (Self et al. 2012). However, it is not
known if the significant contribution of NMDA receptors at feedback connections is specific to V1 (Self et al. 2012)
or can be generalised to the entire cortex. Moreover, it is unclear whether the theoretically hypothesized crucial role
of the NMDA receptors is consistent with recent surprising reports that in human brain the ratio of NMDA to AMPA
receptors actually decreases along the cortical hierarchy (Goulas et al. 2021; Zilles and Palomero-Gallagher 2017). It
is not known whether a similar distribution of glutamatergic receptors exist in macaque monkeys, for which neural
recordings are more widely available. Direct and indirect recording studies suggest that conscious access is associated
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with a mixture of dynamic and stable activity across many brain areas (Dehaene et al. 2001; Del Cul et al. 2007;
King and Dehaene 2014; Rees et al. 2002; Sadaghiani et al. 2009; Sergent et al. 2005; Van Vugt et al. 2018). Any
neuroscientific theory of consciousness must account for such physiological phenomena given the constraints of the
emerging anatomical data on the connectome and cortical glutamatergic receptor distributions.

In this paper, we develop a connectome-based dynamical model of the macaque cortex with realistic biophysical con-
straints and assess its behavior during a stimulus detection task, similar to that used experimentally. Secondly, we
examined whether the parameter regime necessary for realistic model behavior was consistent with receptor distribu-
tions in the macaque cortex. Our model reproduces multiple aspects of monkey behavior and physiology, including
aspects that have evaded previous models such as strong propagation of activity to prefrontal cortex, bifurcation dy-
namics and sustained distributed activity. Furthermore, sufficiently strong stimulus propagation and ignition requires
NMDA/AMPA distributions across cortex that closely match those measured experimentally. Therefore our findings
shed light on the synaptic and systems-level mechanisms underlying ignition and reconcile seemingly contradictory
anatomical, physiological and modeling results.

Results

A large-scale dynamical model of the macaque cortex with NMDA, AMPA and GABA receptors

We built a large-scale model of the macaque cortex containing 40 different interacting cortical areas. Each cortical area
contains a local circuit, with two populations of excitatory neurons and one population of inhibitory neurons (Mejias
and Wang 2022; Wong and Wang 2006). Excitatory connections are mediated by both NMDA and AMPA receptors,
and inhibitory connections are mediated by GABA 4 receptors. Cortical areas differ in their pattern of inter-areal
connections and the strength of excitatory input (due to differences in the expression of dendritic spines Elston 2007).

Cortical areas are connected according to weighted and directed inter-areal connections. The inter-areal connectivity
data was collected by Kennedy and colleagues in a series of retrograde tract-tracing experiments (Froudist-Walsh et al.
2021; Markov et al. 2014, 2012; Mejias et al. 2016). The inter-areal connections can be divided into feedforward and
feedback connections. Feedforward connections target areas that are higher in the hierarchy, and emerge in general
from the superficial layers of the source area. Feedback connections target areas that are lower in the hierarchy and
emerge mostly from deep layers (Barone et al. 2000; Felleman and Van Essen 1991; Markov et al. 2014). In each
long-range connection, the fraction of neurons emerging from the superficial layers in the source area (known as the
supragranular labeled neurons, or SLN) is thus a proxy measure of the ’feedforwardness’ of a connection (Barone
et al. 2000; Markov et al. 2014).

Stimulus detection leads to widespread ignition of activity throughout the fronto-parietal network

We simulated a stimulus detection task by injecting differing, small amounts of external current to primary visual
cortex (V1) for 50ms (Fig 1A). On some trials no external stimulus was presented.

We begin by analyzing the response to the stimulus in different cortical areas. In V1, average activity over trials
increased approximately linearly with stimulus intensity, before returning to baseline a few milliseconds after the
stimulus was removed (Fig 1B). In contrast, on many trials activity in areas throughout the prefrontal and parietal
cortices reached a high activity state at around 200ms (Fig 1B,C). This activity remained stable until the end of the
trial, or until the vigilance signal was removed. The distributed network of regions showing late, sustained, activity
resembles the core of the mesoscopic connectome (Markov et al. 2013). This pattern of prefrontal and early visual
activity closely matches the dynamics of neural activity in monkey prefrontal cortex during a similar task (Van Vugt
et al. 2018). In in-vivo experiments, this late (~200ms onwards) sustained prefrontal activity is a neural marker for
the conscious detection of a stimulus (Van Vugt et al. 2018). We therefore interpret trials with late, sustained activity
in area 9/46d of the prefrontal cortex as corresponding to detection of the stimulus. This interpretation allows us to
define four trial types based on the combination of a stimulus presence and the detection.

Activity in the fronto-parietal network, but not sensory areas distinguishes hit from miss trials

The four trial types are as follows: 1) Hit trials are when a stimulus is presented and detected. 2) Miss trials are when a
stimulus is presented but not detected. 3) Correct rejection trials are when no stimulus presented, and none is detected.
4) False alarm trials are when no stimulus is presented, but a detection is incorrectly reported.

We observed all four trial types in model simulations, which demonstrates how identical stimuli can produce dramat-
ically distinct behavior. Average activity over trials in sensory areas was very similar for hit and miss trials (Fig 1B).
Therefore, regardless of whether the stimulus was detected or not, neural activity in sensory areas reliably tracked
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Figure 1: Approximately linear sensory responses and all-or-none prefrontal dynamics during stimulus detection. A)
Task structure. A near-threshold stimulus is presented to the excitatory population in area VI for 50ms. B) Top:
Averaged activity over trials in VI (primary visual cortex) and area 9/46d (prefrontal cortex) during hit trials, for
differing levels of stimulus intensity (200pA, 250pA and 300pa respectively for Weak, Medium and Strong stimulus
strengths). VI activity rapidly increases to a peak that differs according to stimulus intensity, before falling back to
baseline. 9/46d activity in contrast reaches a high sustained activity state after about 200ms, which does not depend
on stimulus intensity. Bottom: Averaged activity over trials in VI and area 9/46d during miss trials, for differing levels
of stimulus intensity. VI activity is very similar to that on hit trials. 9/46d activity differs drastically, with a smaller
peak of activity followed by a return to a low firing baseline state. C) Firing rates across the cortex during example
hit (Top) and miss (Bottom) trials. Hit trials are accompanied by sustained activity throughout much of prefrontal
and posterior parietal cortex, which is absent on miss trials. Note that in B) and C) stimulus intensity and network
parameters are completely matched between hit and miss trials, which differ only in the random noise.

the objective stimulus strength. This closely matches experimental reports of sensory neurons responding to stim-
uli in both visual and somatosensory cortex (Lafuente and Romo 2005; Van Vugt et al. 2018). In contrast, activity
throughout the fronto-parietal network differed drastically between hit and miss trials. While hit trials engaged strong,
sustained activity throughout frontal and parietal cortices, miss trials led to either a transient increase in activity, which
returned to baseline, or no increase in activity (Fig 1B). This closely corresponds to experimental findings (Romo and
Rossi-Pool 2020; Van Vugt et al. 2018), validating the model.

Notably, depending on noise, the same stimulus strength could either lead to widespread sustained activity, or a return
to baseline. In Figure 1C), we show two trials with the same stimulus strength. In the top example, strong, sustained
activity is ignited throughout much of fronto-parietal cortex, and the stimulus is detected. In the bottom example,
the same strength stimulus leads only to a transient, and weaker activity throughout the same network, before activity
returns to baseline. Our model therefore predicts that the late stimulus-related activity, which was observed by Van
Vugt et al. 2018 in dorsolateral prefrontal cortex and proposed as a marker of conscious access, should be detectable
throughout a distributed prefrontal and posterior parietal cortical network.

Fast propagation of stimulus information to prefrontal cortex depends on feedforward excitation mediated by
AMPA receptors

Inter-areal connections in the cortex arise from neurons with cell bodies in the superficial and deep layers. Neurons
with cell bodies in superficial layers project mostly to areas that are higher in the cortical hierarchy. In contrast,
neurons with cell bodies in deep layers project mostly to areas lower in the cortical hierarchy. Superficial and deep
layer neurons may excite postsynaptic neurons via distinct glutamatergic receptors. Whether superficial and deep
layer neurons excite distinct cell types in their target area is unknown. A previous computational study suggested that
connections from deep layers targeting inhibitory neurons may be important for stabilizing a strongly recurrent cortical
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Figure 2: Fast propagation of stimulus information to prefrontal cortex depends on AMPA receptors at long-range
feedforward connections. A) Schematics showing two alternative inter-areal connectivity schemes from the parame-
ter search in B. B) Results of a 4-parameter search. The principal receptors mediating inter-areal connections from
supeftficial (top to bottom) and deep (left to right) layers are shown across boxes. The cell-type targets of connec-
tions originating in superficial (top to bottom) and deep (left to right) layers are shown within boxes. The resulting
dynamical behaviors of the models are classified into three regimes when exposed to a 50ms strong stimulus input in
V1, no excited state (blue), bistable network containing early sensory areas (red) and workspace bistability (green).
The workspace bistability regime corresponds most closely to experimental findings. C) Effects of AMPA and NMDA
receptors on ignition times. The ignition time (time to reach 95% of peak activity in area 9/46d) depends on the NMDA
fraction of inter-areal connections originating in i) superficial layers and ii) deep layers. iii) The dynamics of activity
in area V4 (normalized firing rate) reflects the distinct dynamics of AMPA and NMDA receptors at feedforward and
feedback connections. D) Details of how interareal connections were implemented for the reference parameter set
used throughout most of the paper (green zone). i) The proportion of connections mediated by NMDA receptors for
example feedforward (VI-to-V2; LIP-t0-9/46d) and feedback (V2-to-V1; 9/46d-to-LIP) pathways. ii) Quantitative il-
lustration of two example inter-areal projections into area V2. One example feedforward pathway is shown (from V1 ).
As is one example feedback pathway (from LIP). The proportion of connections from VI and LIP onto the excitatory
(E) and inhibitory (1) population in V2 is shown. The proportion of connections mediated via AMPA (orange) and
NMDA (purple) is also shown.
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system (Mejias and Wang 2022). Note that distinct layers were not explicitly simulated in the model. However, in the
real brain, connections from superficial and deep layers may have different impacts on brain dynamics. Therefore, we
investigated the following two questions. 1) How do the receptors that mediate connections from superficial and deep
layers affect model dynamics? 2) How do the distinct cell-type targets of connections from superficial and deep layers
impact model dynamics (Fig 2A-C)?

We found three distinct regimes of model behavior in response to a brief, strong 50ms stimulus. In one regime (Fig
2B, blue), activity in response to the stimulus is transient in all cortical areas, before returning to baseline. The second
regime (Fig 2B, red) corresponds to the entire cortex, including sensory and association areas showing sustained
high activity for strong stimuli. This is inconsistent with experimental results, showing that sensory cortical activity
rapidly returns to baseline following the removal of a stimulus, with only a small positive modulation on correctly
detected trials (Lamme 2014; Romo and Rossi-Pool 2020; Van Vugt et al. 2018). The final regime (Fig 2B, green)
corresponds to a bistable state in which sensory areas show a transient response to the stimulus, and a distributed
sustained response is seen across posterior parietal and frontal cortices for strong stimuli. This is consistent with the
cross area temporal dynamics observed in the monkey and human brain (Sergent et al. 2021; Van Vugt et al. 2018).
Due to the close correspondence of this regime to theoretical proposals of the Global Neuronal Workspace theory,
we name it the workspace bistability’ regime. The reference parameter set used in all figures of the paper (unless
specified otherwise) was taken from this workspace bistability regime.

For workspace bistability dynamics, connections from superficial layers should be principally mediated by AMPA
receptors (Fig 2B). This is shown by the green patch appearing in the lower blocks of the parameter space shown in
Figure 2B. The workspace bistability dynamics are more robust to small parameter changes if connections from deep
layers are mediated partially by NMDA receptors. This can be seen by the green patch growing in size as we move
from left to right blocks of the parameter space in Figure 2B.

When looking within individual blocks of parameter space (Fig 2B, individual squares), it is clear that the workspace
bistability regime depends on superficial layer connections targeting mainly excitatory cells. This can be seen as the
green patches are near the top of individual squares in Figure 2B. In contrast, a large proportion, but not necessarily all,
of the connections from deep layers should target inhibitory cells. Note that the green patch lies between the left and
centre of individual squares in Figure 2B. This is in line with recent electrophysiology studies showing that feedback
signals are net inhibitory, despite a focal excitatory component (Huang et al. 2019; Javadzadeh and Hofer 2022; Yoo
et al. 2021).

In monkey experiments, frontal cortical activity ignites in response to sensory information in the macaque after approx-
imately 130-200ms (Lafuente and Romo 2006; Thorpe and Fabre-Thorpe 2001; Van Vugt et al. 2018). In the model,
we estimated the “ignition time’ as the time at which activity in dIPFC (area 9/46d) reached 95% of its maximum firing
rate. We found that the ignition time was sensitive to the receptor type that mediated excitation from superficial layer
connections. With an increase in the proportion of excitation from superficial layer connections mediated by NMDA
instead of AMPA receptors, the ignition time rose to unrealistically slow levels (Fig 2Ci, left panel). Therefore, our
model suggests that AMPA receptors at connections from superficial layers are crucial for the fast access of stimuli to
conscious processing.

Surprisingly, an increase in the fraction of connections from deep layers mediated by AMPA receptors increased the
ignition time. If the proportion mediated by AMPA instead of NMDA receptors was increased, again we began to see
unrealistically slow ignition times (Fig 2Cii). To understand this further, we examined (for the reference parameter
set) the normalized firing rate and currents through AMPA and NMDA receptors in area V4, which receives both
feedforward and feedback inter-areal input (Fig 2Ciii). The firing rate increases rapidly with AMPA-dependent exci-
tatory input. The firing rate gradually declines as NMDA receptors are engaged. This is due to a large proportion of
connections from deep layers mediated by NMDA receptors target inhibitory neurons. If deep layer connections to
inhibitory cells are mediated by AMPA receptors, the time window in which excitation exceeds inhibition is drasti-
cally shortened, effectively shutting down stimulus-related activity. Therefore, fast AMPA-dependent excitation and
slow NMDA-dependent effective inhibition allows the feedforward excitation to transiently "escape’ the inhibition and
successfully propagate stimulus-related activity along the cortical hierarchy.

We next analyzed specific connections in the model, for the reference parameter set. This can be seen by calculating
the NMDA fraction of specific feedforward (V1 — V2, LIP — 9/46d) and feedback pathways (V2 — V1, 9/46d —
LIP, Fig 2di). The proportion of connections mediated by NMDA receptors is relatively much higher in the feedback
pathways (~ 4%) than in the feedforward patways (~ 1%). This difference is functionally important (Fig 2B,C), and
large in relative terms ( 300% increase). Yet, the total contribution of NMDA receptors at feedback pathways remains
small (~ 4%).
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We also examine specific feedforward (from V1) and feedback (from LIP) connections to V2 in the model (Fig 2Dii).
The Sankey plot in Fig 2Dii demonstrates the relatively greater targeting of inhibitory neurons by feedback pathways,
as well as the greater proportion of connections mediated by NMDA. Therefore pathways from superficial layers
contribute more to excitation of the target neural population.

A bifurcation in brain dynamics associated with ignition

The spatial and temporal signatures of conscious access are under intense debate (Block 2019). Sergent and colleagues
recently performed a study with human subjects listening to auditory stimuli at various intensities around the threshold
for detection during a no-report paradigm task, and measured electroencephalography (Sergent et al. 2021). In the first
200ms, they observed that cortical activity increased with increasing stimulus strength, irrespective of whether the
stimulus was later detected or missed. When plotted across trials, this early activity created a unimodal distribution,
and likely corresponded to pre-conscious processing (Dehaene et al. 2006). After ~250ms, activity either increased
to a high activity state, or returned to a low activity state (Sergent et al. 2021). The high activity state corresponded to
the conscious detection of the stimulus. In contrast, the low activity state occurred on trials in which the stimulus was
not detected. The statistics of late activity (as a combination of high and low late activity trials) displayed a bimodal
distribution. This bimodal distribution was particularly notable for stimulation around threshold values, where the
same stimulus leads to hits or misses with roughly equal probability. Thus, Sergent and colleagues suggest that trial
activity proceeds from a dynamic sequence of early states to one of two possible late activity states (for prior evidence,
see e.g. (Sergent and Dehaene 2003)). Therefore the number, and/or the stability of internal states of neural activity
appears to change over time. A change in the number or stability of internal states is known in non-linear dynamics
as a bifurcation. The neural mechanisms underlying the dynamical emergence of such a bifurcation are not yet fully
understood.

Following the methods of Sergent et al., we analyzed model activity at each timepoint across several trials, and ex-
amined whether activity across trials was best described by a null distribution (neural activity independent of the
stimulus), unimodal distribution or a bimodal distribution. For the unimodal model, the mean activity increases lin-
early with the stimulus strength. For the bimodal model, the probability of being in a high activity state increases
with the strength of the stimulus, and the probability of being in a distinct low-activity state decreases. We estimated
the Bayesian posterior probability that each statistical model underlay the the trial-by-trial simulated activity of the
connectome-based dynamical model. As expected, and seen experimentally, the null model best described activity
before the stimulus. Shortly following the stimulus, activity was best described by a unimodal distribution. After
approximately 100ms, the data were best described by a bimodal distribution (Fig 3A), which suggests the appearance
of a bifurcation. This temporal progression of the across-trial activity from null, to unimodal, to bimodal distributions
matches the experimental observations in humans detecting auditory stimuli (Sergent et al. 2021). In our model, we
detect a bifurcation after about 100ms, which is earlier than in the human data. This may reflect the relatively faster
propagation of activity to prefrontal cortex in the monkey compared to human brain. This may also reflect a lack of the
retina-to-V1 pathway, explicit axonal delays, and synaptic transmission latencies in the model, which together could
add up to a few tens of milliseconds. However, in our dynamical model the late activity reaches its peak in prefrontal
cortex after 200ms (see Fig 2B). This broadly matches the timing of stimulus-induced prefrontal activity observed in
monkey experiments, which is observable from ~ 60ms following stimulus onset and peaks after ~ 150 — 200ms
(Bellet et al. 2022; Thorpe and Fabre-Thorpe 2001; Van Vugt et al. 2018). Therefore, our connectome-based dynam-
ical model accounts for the temporal progression of activity states observed in the brain during stimulus detection
tasks.

A dynamic-to-sustained progression of activity states associated with ignition

Previous studies of conscious perception have reported that neural dynamics evolve from a dynamic to a relatively
stable activity pattern (Dehaene and King 2016; Schurger et al. 2015). To test the stability of a neural code, many
authors use the temporal generalization method (Cavanagh et al. 2018; King and Dehaene 2014; Meyers et al. 2008;
Wasmuht et al. 2018). As with many decoding methods, the trials are first separated into training and test sets. The
classifier aims to predict some trial feature (such as whether a participant perceived the stimulus) based on neural
activity. Particular to this method, a separate classifier is trained for each timepoint in the trial. The classifier trained
at a particular timepoint in the training set is then tested using the activity at each timepoint in the test set. Thus, there
are 7' classifiers (equal to the number of timepoints in every trial in the training set) and each classifier is associated
with 7" different accuracies, one for each timepoint in the test set. The overall classifier performance can therefore be
represented in a 7' x T" temporal generalization matrix. We aimed to decode the trial outcome (hit/miss) from activity at
each timepoint for a fixed stimulus near to the threshold of detection. We defined trial outcome based on activity in area
9/46d, and predicted this outcome using activity in all other cortical areas. Here high classifier accuracy is represented
in red, low in white, and below-chance accuracy in blue. High accuracy that is restricted to a narrow band around the
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Figure 3: A dynamic-to-sustained progression of activity states associated with ignition. A) Across-trial statistics of
neural activity for different stimulus strengths were used to classify model neural activity as belonging to null (black),
unimodal (purple), or bimodal (red) distributions at each timepoint. Activity progresses from a null-distribution to
unimodal and finally bimodal across-trial activity distributions, indicative of a bifurcation. B) Temporal generalization
matrix. For stimuli at the detection threshold (about 50% detection rate), a classifier trained to decode trial outcome
(hit/miss) from the activity pattern at each time point in a training data set is used to predict outcome based on the
activity at each trial timepoint in held-out data. A diagonal pattern (e.g. in the lower-left dashed box) indicates a
quickly-changing dynamical code. A square pattern (e.g. in the upper-right dashed box) indicates a stable code. C)
Cortical surface representation of the mean and standard deviation of the normalized decoder coefficients for early
(0-50ms) and late (300-350ms) periods of the trial. D) Mean (+,- SD) of the normalized decoder coefficients for early
(0-50ms) and late (300-350ms) periods of the trial, as a function of the hierarchical position of each cortical area. E)
Correlation (Pearson’s r) between the decoder coefficients at each timepoint and the cortical hierarchy. The red bar
shows the time-range with a statistically significant correl@tion.
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diagonal is indicative of a succession of different activity patterns that predicts stimulus visibility. In contrast, a square
pattern indicates a stable activity pattern associated with stimulus visibility. We observed a succession of patterns
coding for stimulus visibility in the early trial stages, with reasonably high classification accuracy remaining close
to the diagonal (Fig 3B, lower left box). In the later trial period we observed a stable pattern of vey high decoding
accuracy, with the decoders trained between ~ 100 — 400ms generalizing to all other timepoints within that range
(Fig 3B, upper right box). Classifiers trained on some early timepoints had below-chance accuracy at decoding later
timepoints (blue patches in Fig 3B). This indicates that early activity patterns are effectively reversed later in the trial.
Similar results have been reported in the human experimental literature (King et al. 2016; Sergent et al. 2021). Our
model suggests that the below-chance generalization from early to late timepoints may be due to higher associative
areas sending net inhibitory feedback to areas that are lower in the visual hierarchy. Put another way, the stable, ignited
activity pattern can lead to a reversal of the activity patterns that occur during stimulus propagation.

We then examined the decoder coefficients in the early (0-50ms) and later (300-350ms) trial periods. Decoding
coefficients were highly variable over the first 50 ms (Fig 3C left, Fig 3D). In the late trial period (Fig 3C, right,
Fig 3D), the mean decoder coefficients are relatively high throughout a distributed network of frontal, parietal and
some temporal regions, while the standard deviation of decoder coefficients is low. This confirms that the activity
patterns predictive of trial outcome are stable late in the trial, and identifies them as belonging to the fronto-parietal
network. The standard deviation is moderate only in regions of frontal cortex to which activity propagates last. This
demonstrates how a stable code throughout fronto-parietal cortex can coexist with a dynamic activity in some areas of
cortex. This prediction can be tested experimentally.

The coefficients of the late decoder are higher in areas that are high in the cortical hierarchy (Fig 3D). A significant,
and stable, correlation between decoder coefficients and the cortical hierarchy emerges late in the trial, after about
300ms (Fig 3E). This suggests that late in the trial, activity in areas that are higher in the cortical hierarchy, rather than
early sensory areas, is most important for stimulus detection.

The probability of detecting a stimulus increases nonlinearly with stimulus intensity

Due to the stochastic single-trial behavior, it is possible to analyze how the proportion of hit trials varies with stimulus
intensity. Note that late activity always proceeded to either a high or low activity state, as seen in monkey and human
experiments (Sergent et al. 2021; Van Vugt et al. 2018). We analyzed the proportion of trials for which strong sustained
activity was engaged in area 9/46d of the prefrontal cortex (i.e. hits) for each stimulus intensity. The proportion of
hits increased with the stimulus intensity, with a sigmoidal curve accurately fitting the data (Fig. 4). The sigmoidal
relationship between stimulus intensity and detection has frequently been observed in monkeys and humans (Del Cul
et al. 2007; Lafuente and Romo 2006; Van Vugt et al. 2018), further justifying the use of sustained activity in area
9/46d as a marker of detection in our model.

Non-linear dynamics underlying stimulus detection, false alarms and misses

To better understand the dynamics determining whether individual trials would result in a hit, a miss, a false alarm
or a correct rejection, we built a simplified local model with a single area made of a single excitatory and a single
inhibitory population (Fig. 5A). The equations are the same as in the full model, only the connectivity is different.
Additionally, we focused on excitation mediated by the NMDA receptors. This reduces the system to two dynamical
variables, corresponding to the synaptic variables Syarpa and Sgapa. This simplification enables us to analyze the
dynamics of individual areas by looking at their phase portraits (Strogatz 2018).

We first analyze the dynamics for hit and miss trials (Fig 5Bi). If the system is in a particular activity state, the phase
portraits show us how the activity will evolve over time. The phase portraits show the excitatory synaptic activity on
the horizontal axis, and the inhibitory synaptic activity on the vertical axis. We show the nullclines for the excitatory
(red curved line) and inhibitory (blue line) synaptic dynamics. The nullclines indicate the activity states for which the
excitatory synaptic activity is at a local equilibrium (red curved line) or the inhibitory synaptic activity is at a local
equilibrium (blue line). The steady states of the system correspond to the points where the nullclines intersect. The
system initially has two stable steady states, corresponding to low and high activity states (Excitation close to 0 and
Excitation close to 0.5) and an unstable steady state (at about Excitation = 0.2). The stable steady states attract activity
towards them, while the unstable steady state repels nearby activity to move towards one of the stable steady states.

The dynamics of single trials are illustrated in green and purple for example hit and miss trials, respectively. Before
the stimulus, the system begins at the low steady state. The stimulus to the excitatory neural population shifts the
excitation nullcline up. This reduces the number of nullcline crossings from three to one. The single remaining
crossing represents a stable steady state, and activity is attracted towards this high activity state during the stimulus.
This can be seen as both green and purple trajectories move towards the single nullcline crossing during the ’Stimulus
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Figure 4: A sigmoidal relationship between stimulus intensity and detection probability. A) The rate at which the
large-scale cortical model detects the stimulus (engages sustained activity over 15Hz in area 9/46d ) increases non-
linearly with the stimulus intensity (input current in VI1). B) The distributions of firing rates across trials for area
9/46d in the large-scale model for strong (about 80% detection rate) and weak (about 20% detection rate) stimuli.
The outcome of individual trials is stochastic, depending on the noise in the system, but the system always ends in
either a high activity state, corresponding to stimulus detection, or a low activity state, corresponding to a miss. A
higher percentage of trials with a strong stimulus end in the high activity state compared to trials with a weak stimulus
(as seen by the darker red in the high activity branch after 200ms). Stimulus is presented at Oms for 50ms.

on’ period. Due to noise, the speed at which the activity increases towards the nullcline crossing differs. Here the green
trajectory moves further towards the nullcline crossing in the same amount of time. When the stimulus is removed
(’Early Post-Stimulus’), the nullclines rapidly shift back to their original position. As the unstable steady state (the
middle nullcline crossing) repels activity away from itself, this effectively acts as a threshold. When the stimulus is
removed, any activity to the left of the unstable steady state (such as the purple trajectory in Fig 5Bi) is repelled from
the unstable steady state (middle crossing) and attracted back to the low activity steady state (left crossing), resulting
in a miss. A firing pattern corresponding to these dynamics is shown in purple, in an example trial from the large-
scale network (Fig 5Bii). At the time when the stimulus is removed, if activity is to the right of the unstable steady
state (i.e higher excitation), the activity is again repelled from the unstable steady state (middle crossing), but now is
attracted towards the high activity steady state (right crossing), leading to a hit. An example of this is shown by the
green trajectory in Fig 5Bi and 5Bii. A stronger stimulus will lead to a larger shift in the excitatory nullcline, which
increases the possibility of trajectories reaching the basin of attraction of the high activity state by the time the stimulus
is removed.

The stimulus represents a strong, rapid change in input to the system. This strong input causes a large change in the
nullclines, and a rapid increase in activity towards the high activity state. However, subtle shifts in the baseline neural
firing rate also occur from trial to trial (Van Vugt et al. 2018). This is sometimes interpreted as representing different
levels of ’vigilance’ (Dehaene et al. 2003; Dehaene and Changeux 2005). We now analyze the effect of changes to
the vigilance, implemented in the model as a small increase in current to the excitatory population. In the brain, this
could represent input from subcortical structures (such as the thalamus or sources of neuromodulatory transmitters)
or perhaps top-down attention. In the following analysis, no stimulus is presented. For low vigilance, as in the pre-
stimulus example above, the network is at the low activity steady state. An increase in the vigilance input gradually
shifts the excitation nullcline up, to a lesser degree than the stimulus (Fig 5Ci). This reduces the basin of attraction for
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Figure 5: Nonlinear dynamics underlying stimulus detection, misses, false alarms and correct rejections. A) Simplified
circuit for analysis of dynamics, containing a single excitatory and a single inhibitory population, interacting via
NMDA and GABA receptors. Bi) Phase portrait of the simplified network at different trial stages. Example dynamics
for individual hit and miss trials are shown in green and purple, respectively. The stimulus causes the excitation
nullcline (red) to move up, reducing the number of crossings with the inhibition nullcine (blue). Removal of the
stimulus moves the nullclines back to the original positions. In the hit trial, by the time the stimulus has been removed,
activity has reached the basin of attraction of the high activity steady state and progresses towards it (right nullcline
crossing). In the miss trial, activity remains in the basin of attraction of the low activity steady state (left nullcline
crossing), and returns towards it after removal of the stimulus. Bii) Firing rates from area 9/46d in the large-scale
system on individual hit (green) and miss (purple) trials, corresponding to the dynamics shown in i). Ci) Phase portrait
of the network with a strong vigilance signal in the absence of a stimulus. Two example individual trials are shown.
The vigilance causes the excitation nullcline to shift up, to a smaller degree than during a stimulus. This can lead to
an increase of activity to the high activity state, in the absence of a stimulus, corresponding to a false alarm (green).
Activity on a correct rejection trial is shown in purple. ii) Firing rates from area 9/46d in the large-scale system on
individual false alarm (green) and correct rejections (purple).

the resting state, and could even transiently eliminate it. In this case the excitation nullcline remains extremely close
to the inhibition nullcline, near the location of the previous low activity steady state. Activity that remains close to
the low attractor state throughout the trial represents a correct rejection (Fig 5C, purple trajectories and activity trace).
When the low steady state attractor no longer exists, we are very close in parameter space to its location. An attractor
that is "no longer with us’ but still affects dynamics is known as a ghost attractor (Strogatz 2018; Vohryzek et al. 2020).
Due to the proximity (in parameter space) of the attractor, it can still have an effect by slowing down the dynamics (Lo
et al. 2015). On some of these trials without a stimulus, activity increases past the threshold for stimulus detection.
This represents a false alarm (Fig 5Ci-ii, Green). Therefore, the dynamic activity patterns of all four trial types can
result from noise and transient bifurcations induced by the external stimulus or an internal vigilance signal.

The dynamics of ignition on false alarm trials across the cortex

In the model, we observed that the activity in area 9/46d, when averaged across false alarm trials, appears to slowly
ramp up (Fig 6A). This simulated across-trial activity closely matches experimental data from the monkey dorsolateral
prefrontal cortex (See Fig. 2 of Van Vugt et al. 2018). This observed ramping activity in data that is averaged across
trials can arise from either ramping activity on single trials or sudden jumps in activity that occur at varied times across
trials (Latimer et al. 2015). We investigated this further by examining single trial data from area 9/46d of the model
on false alarm trials. For these simulations, we increased the strength of the vigilance signal (to 88pA) to obtain a
higher proportion of false alarm trials. This analysis revealed rapid jumps in activity on individual trials that occurred
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Figure 6: The slow ramping prefrontal activity on false alarm trials is a consequence of trial averaging. A) Average
activity across trials in dorsolateral prefrontal cortex for each trial type in the model (area 9/46d). This closely matches
the experimental data from dIPFC in Figure 2 of Van Vugt et al., 2018. B) Activity on false alarm trials during high
vigilance trials (88pA). Average activity across 100 trials is shown in blue. Activity from twenty individual trials is
shown in various colours (thin lines). C) Ignition times of cortical areas (relative to area 9/46d) in higher cognitive
networks (blue) and sensory stream networks (orange) on hit trials (left) and false alarm trials (right). D) The relative
ignition time of higher cognitive networks areas and sensory stream areas on 1000 false alarm trials (blue) and 1000
hit trials (orange).

at varied times across trials, rather than a gradual ramping of activity. This model prediction can be directly tested in
neural recording data.

The cortical origin of ignition differs between hit and false alarm trials

Next, we explored how the origin of the sudden transition to high neuronal activity (’ignition’), differs between hit and
false alarm trials. We used the sudden jumps in activity in area 9/46d as a reference to understand the relative timing
of ignition across the cortex. For each brain area that reached a sustained high activity state, we calculated the jump
time. For this analysis, we divided cortical regions into those belonging to ’sensory streams’ (visual, somatomotor,
dorsal attention network) and ’higher cognitive networks’ (default mode, salience, limbic, fronto-parietal network).
We assigned network labels to individual regions using cross-species functional alignment (Froudist-Walsh et al. 2023;
Xu et al. 2020). On hit trials, areas belonging to sensory streams reliably ignited before higher cognitive networks (Fig.
6C,D). This reflects the propagation of information from early sensory cortex into the distributed cognitive networks.
It also suggests that ignition may not always be instant, but has spatiotemporal dynamics constrained by the cortical
hierarchy. In contrast, on false alarm trials, the ignition time for higher cognitive areas was slightly faster than that
for sensory areas. The difference in average ignition times between higher cognitive and sensory stream networks
was significantly different between hit and false alarm trials (p < 0.0001, non-parametric test over 1000 false alarm
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Figure 7: Increased pre-stimulus activity increases probability of detection and false alarms. A) An increase in the
vigilance signal in the model increases the sensitivity of the model to detecting weak stimuli. Very high levels of
vigilance (95pA) also increase erroneous detection of non-existent (OpA) stimuli. B) The false-alarm rate increases
approximately linearly with the pre-stimulus baseline firing rate. C) An increase in the standard deviation of the noise
shifts up the stimulus-response curve, leading to a large increase in false alarms, and increased detection of weak
stimuli. D) The false-alarm rate increases with the standard deviation of the noise.

simulations and 1000 hit trial simulations). Therefore false-alarms (and perhaps hallucinations more generally) may
originate by spontaneous increases in activity in higher cognitive networks that spread rapidly throughout a widely
distributed cortical network.

Increased spontaneous activity increases the probability of detection and false alarms

Would variations in the vigilance signal also induce false-alarm behavior in the connectome-based model? Vigilance
was implemented as an additional current (0-95pA) to the excitatory populations of the associative areas of cortex
(top 75% of cortical areas in the hierarchy). As before, the target stimulus was presented to one of the excitatory
populations in V1. Again, the ignition rate increased sigmoidally with the strength of the stimulus. The strength of
the vigilance signal increased the slope of the sigmoid function (Fig 7A). This increase in slope results in a greater
sensitivity to detect weak stimuli. For a very high vigilance signal (95pA) the intercept of the sigmoid with the vertical
axis was raised (Fig. 7A). This means that for very high vigilance, the system is also more susceptible to false alarms
(increased "detection’ rate at OpA input current). This is consistent with the analysis of the simplified system, showing
that vigilance signals can bring the system closer to a threshold for detection. Thus, with higher vigilance, weak
stimuli are more likely to be detected, but the system is also vulnerable to erroneously detecting a stimulus when it is
actually absent.

The baseline firing rate also rose with the increased vigilance signal input. We tested whether, for a constant noise level,
shifts in the baseline firing rate were associated with an increase in false alarm trials. Several experimental studies
have reported a relationship between baseline brain activity and either stimulus detection (Boly et al. 2007; Busch
et al. 2009; Podvalny et al. 2019; Sadaghiani et al. 2009; Wyart and Tallon-Baudry 2009) or false alarms (Podvalny
et al. 2019; Van Vugt et al. 2018). Indeed, we found a strong positive relationship between baseline firing rate and the
false alarm rate. We understand this as follows: in a bistable system, if the low activity steady state is sufficiently far
from the threshold (unstable steady state), then noise is unlikely to make activity jump across the threshold. However,
if the low activity steady state (i.e. the baseline firing rate) is high enough to be close to the threshold, then the same
amount of noise can enable it to occasionally cross the threshold into the attractor basin of the high activity attractor
(Lo et al. 2015). Once it has crossed this threshold, it will inevitably continue to increase until it reaches the high
activity steady state, which constitutes a false alarm.
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We also examined how model behavior depended on the magnitude of the noise injected in both excitatory pools of
all areas. The most noticeable effect of increasing the standard deviation of the noise is a large corresponding upward
shift in the sigmoid function relating input current to detection. This also led to a more subtle decrease in the slope
of the sigmoid (Fig 7C). In particular, this corresponds to a dramatic increase in the false alarm rate. The false alarm
rate grew with the standard deviation of the noise, with a roughly linear increase between 2 and 4Hz, until it reached a
plateau (Fig 7D). Thus, for a given low activity steady state (i.e. baseline firing rate), the probability of jumping to the
attractor basin of the high activity steady state (i.e. a false alarm) increases with the standard deviation of the noise.
Therefore, the simplified local cortical model with NMDA and GABA receptors provides a good intuition for some
aspects of neural dynamics in the large-scale cortical model, and experimental data.

The NMDA/AMPA ratio decreases along the cortical hierarchy

Near the top of the cortical hierarchy, areas receive a greater proportion of feedforward than feedback inter-areal
connections. Conversely, areas near the bottom of the hierarchy (such as early sensory cortex) receive a greater
proportion of inter-areal feedback connections. This would predict that the proportion of NMDA receptors (as a
fraction of glutamate receptors) may actually decrease along the cortical hierarchy. We calculated the NMDA fraction
(as a fraction of NMDA and AMPA receptor-mediated excitation) in the model for the reference parameter set used
throughout the paper. We compared the model NMDA fraction to a cortical hierarchy of 40 areas derived from laminar
patterns of inter-areal connections (Froudist-Walsh et al. 2021; Markov et al. 2014). In the model, we observed a strong
decrease in the NMDA fraction along the cortical hierarchy (Fig 8A, r = —0.71,p = 3x 10~ 7). Therefore, in apparent
contrast to previous physiological and computational studies that have emphasized the importance of AMPA receptors
in sensory cortex (Self et al. 2012; Yang et al. 2018) and NMDA receptors in prefrontal cortex (Van Vugt et al. 2020;
Wang et al. 2013; Wang 1999; Yang et al. 2018), our model predicts a decrease in the NMDA fraction along the
macaque monkey cortical hierarchy.

We tested this prediction by analyzing in-vitro receptor autoradiography data from 109 regions of macaque cortex
(Froudist-Walsh et al. 2023; Impieri et al. 2019; Niu et al. 2020, 2021; Rapan et al. 2021). By dividing the receptor
density by the neuron density in each area (Collins et al. 2010; Froudist-Walsh et al. 2021, 2023), we were able
to estimate the NMDA and AMPA density per neuron in each area (Fig 8B). We found that both the NMDA (r =
0.70,p = 1 x 107°) and the AMPA (r = 0.80,p = 3 x 10~®) receptor densities per neuron increased along the
cortical hierarchy (Fig. 8C). We defined the 'NMDA fraction’ in each area as the NMDA receptor density divided by
the sum of the NMDA and AMPA receptor densities. Despite the increases in both NMDA and AMPA densities along
the hierarchy, there was a strong negative correlation between the NMDA fraction from the experimental data and the
cortical hierarchy (Fig 8D,E, » = —0.81,p = 2 x 10~%), confirming our model prediction.

The decreasing NMDA/AMPA gradient supports ignition

We then adjusted the model parameters to match the experimentally observed NMDA and AMPA receptor densities.
In Figure 2 we demonstrated how the NMDA fraction at feedforward and feedback connections critically determines
ignition time. We therefore maintained the NMDA fraction at feedforward and feedback connections from the refer-
ence model. However, we allowed the NMDA fraction at local connections to vary across areas, so that the overall
NMDA fraction of each area in the model closely matched that observed in the receptor autoradiography data. Without
changing any other parameters, we observed that this receptor data-based simulation displayed workspace-bistability
dynamics (Fig 8F). Specifically, in the receptor data-based model, transient activity was observed in response to the
stimulus in visual areas, and distributed sustained activity was observed in posterior parietal and prefrontal cortex.
Therefore, a counterintuitive decrease in the NMDA fraction along the hierarchy may have evolved to enable the
dynamic inter-areal interactions required to support ignition-like dynamics.

Ignition depends on NMDA receptor activation in local excitatory connections

Cortical dynamics depend on both inter-areal and within-area (local) interactions. Does ignition also depend on the re-
ceptors that mediate local excitation? We adjusted the model so that the NMDA fraction of local excitatory connection
varied. For a very low NMDA fraction, we see sustained activity in the fronto-parietal network, but at unrealistically
high firing rates (mean frontoparietal delay activity = 173Hz for local NMDA fraction = 0.2, Fig 8G, Right Top).
Only models with a relatively high fraction of local excitatory connections mediated by NMDA receptors showed
workspace bistability and sustained activity in the fronto-parietal network at a reasonable firing rate (mean frontopari-
etal delay activity = 40Hz for local NMDA fraction = 0.8, Fig 8G, Right Bottom). However, if local connections were
completely mediated by NMDA receptors, bistability was lost. This suggests that a contribution of AMPA-mediated
excitation is helpful to engage NMDA-mediated excitation and sustained activity. Therefore, our model suggests that
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Figure 8: The NMDA/AMPA ratio decreases along the cortical hierarchy and supports ignition. A) The fraction of
excitatory inputs via NMDA receptors (compared to total NMDA+AMPA inputs) in the model decreases along the hier-
archy. B) The density of i) AMPA and ii) NMDA receptors across 109 regions of macaque cortex. Receptor density was
measured using in-vitro receptor autoradiography, and divided by the neuron density data from Collins et al., 2010.
C) AMPA and NMDA densities per neuron both increase along the cortical hierarchy. D, E) The fraction of NMDA re-
ceptors (compared to total NMDA+AMPA receptors) in tHdmacaque receptor autoradiography data decreases along
the hierarchy. F) The model was adjusted to matched the receptor densities observed in the autoradiography data.
The receptor data-based model shows ignition of fronto-parietal activity in response to a visual stimulus. G) Left.
Average firing rate in areas showing delay activity for models with different local NMDA fractions. Right. Delay
period activity across the cortex for models with different local NMDA fractions (Top: local NMDA fraction = 0.2,
Bottom: local NMDA fraction = 0.8). Only the models with a relatively high fraction of local excitation mediated by

NMDA receptors can reproduce realistic fronto-parietal activity levels.
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NMDA receptors at local excitatory connections are crucial for ignition of cortical activity in response to a stimulus,
in support of the previous theoretical (Wang 1999) and experimental (Wang et al. 2013) findings.

Discussion

We developed a novel large-scale model of monkey cortex and used it to simulate a detection task. The present work
builds upon a previously proposed global neuronal workspace (GNW) architecture (Dehaene et al. 2003; Dehaene and
Changeux 2005), but now incorporating newly available weighted and directed cortical connectivity data (Froudist-
Walsh et al. 2021; Markov et al. 2014, 2012; Markov et al. 2013; Mejias et al. 2016) and receptor data (Froudist-
Walsh et al. 2023; Impieri et al. 2019; Niu et al. 2020, 2021; Rapan et al. 2021). Using this model, we replicated
multiple spatial and temporal features of neural activity that are observed during conscious perception. The close
correspondence of our simulations to experimental results enabled us to identify candidate synaptic and network level
mechanisms underlying conscious perception. Our model predicts that the rapid ignition of fronto-parietal activity that
accompanies conscious perception depends on feedforward inter-areal excitation being primarily mediated by AMPA
receptors. However, AMPA receptors are not sufficient to reproduce experimental activity patterns, as networks that
rely on AMPA receptors for local excitation cannot reproduce realistic firing rates in fronto-parietal cortex. We show
that sustained fronto-parietal activity depends critically on the NMDA receptors. Our modeling results led to the
surprising prediction that the NMDA/AMPA ratio should decrease along the cortical hierarchy. We confirmed this
model prediction by analyzing in-vivo receptor autoradiography data across dozens of cortical regions. Finally, we
show how this decreasing NMDA/AMPA ratio supports the fast propagation of stimulus-related information along the
hierarchy, and ignition of a distributed fronto-parietal network, as is seen during conscious perception in both human
and nonhuman animals.

Network, cellular, and synaptic mechanisms of conscious access

Our model displayed behavior and cortical activity patterns that fit well with several results from the experimental
literature. Notably, early sensory cortex displayed a transient, approximately linear response to the stimulus. This
contrasted with the late, sustained, all-or-none response in parts of the prefrontal cortex, reproducing the experimental
findings in a monkey experiment specifically designed to test the GNW theory (Van Vugt et al. 2018). Our model
suggests that similar transient signals should be detected throughout the early visual system, while an all-or-none
response should depend on the fronto-parietal circuit. This all-or-none distributed activity broadly lends support to the
GNW framework (Dehaene et al. 1998, 2003), in which a strongly interconnected network of prefrontal and parietal
neurons broadcasts information widely throughout the brain. Some models of the GNW theory suggest that this
fronto-parietal network would excite, sustain and broadcast the original stimulus representation in sensory neurons
after the stimulus has disappeared (Dehaene et al. 2003). While such delayed activity in early sensory cortex has
been observed in some studies (Harrison and Tong 2009; Kerkoerle et al. 2017; Super et al. 2001), the consistency
with which it occurs is not clear, and many studies have not observed sustained neural activity (Leavitt et al. 2017),
or only a small modulation (e.g. Van Vugt et al. 2018). To reproduce these latter experimental activity patterns, we
found that feedback connections must substantially target inhibitory neurons. This is consistent with recent reports
that top-down attention has a net-inhibitory effect on sensory cortex (Huang et al. 2019; Javadzadeh and Hofer 2022;
Yoo et al. 2021) and with previous models predicting the need for feedback inhibition to sustain distributed persistent
activity (Mejias and Wang 2022). A parsimonious explanation of the contrasting data on early sensory activity is
that many tasks can be performed by maintaining a representation of only higher-order aspects of the stimuli, and
therefore sustained activity is not required in early sensory cortex. This frees early sensory cortex to encode new
sensory information. However, a focal top-down excitatory connection onto excitatory neurons in the target sensory
area may be engaged, for example when attention to precise sensory details is required. The mixed excitatory and
inhibitory effects of top-down connections can be addressed in more detail in future large-scale models with a greater
diversity of neural populations in each area, forming retinotopic or cognitive cortical maps (Ardid et al. 2007). Such
models could shed light on how different cognitive states may affect the dynamics (Melloni et al. 2011) and activity
patterns across cortical regions as well as subcortical structures.

The network mechanisms of conscious perception themselves depend on cellular and synaptic mechanisms. Our model
suggests that at the synaptic level, NMDA receptors are crucial for the ignition phenomenon. NMDA-dependent ex-
citation is affected by various neuromodulators, which can enable (Yang et al. 2013), enhance (Arnsten et al. 2020;
Galvin et al. 2020; Vijayraghavan et al. 2007), or counteract (Arnsten et al. 2020, 2019; Vijayraghavan et al. 2007)
its effects. NMDA-spikes are relatively localized within pyramidal cell dendrites, but they increase the probability
of plateau-like calcium spikes, which propagate a much greater distance towards the soma (Aru et al. 2020). This
dendrite-soma coupling fades under anaesthesia (Suzuki and Larkum 2020). Moreover, activation of the apical den-
drites of subcortically-projecting layer 5 pyramidal cells in the mouse somatosensory cortex is robustly associated with
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stimulus detection (Takahashi et al. 2020). Activation of these layer 5 pyramidal cells could trigger the subcortical
vigilance signal required for ignition of the distributed cortical network. Therefore, our finding of the importance
of NMDA receptors and a (potentially subcortical) vigilance signal to ignition is consistent with multiple converging
lines of evidence, which are illuminating the network, cellular and synaptic mechanisms of conscious processing. In
the future, the development of large-scale network simulations with spiking neurons (Brette et al. 2007; Joglekar et al.
2018), linking from ion channels to dendritic, laminar, areal and brain-wide dynamics (Goldman et al. 2019) across
species (Sanz Leon et al. 2013) should help link across the scales of neuroscience and provide a platform to test various
theories of consciousness (Doerig et al. 2021; Seth and Bayne 2022; Signorelli et al. 2021).

A dynamic-to-stable transition of cortical activity during conscious perception

Although more complex models may be valuable, we show that even a reduced two-variable model can provide useful
intuitions to explain conscious and unconscious neural dynamics. The dynamics of neural activity in response to
stimuli consistently follow one of two patterns. Sergent and colleagues analyzed the inter-trial variability of cortical
activity while humans performed an auditory stimulus detection task (Sergent et al. 2021). Regardless of whether
the stimulus was detected or not, in the first 250ms, neural activity followed a reliable trajectory. Following this point
activity either proceeded towards a high, or a low state, which corresponded to conscious or unconscious processing of
the stimuli (Sergent et al. 2021). The transition in time could be appreciated by activity across trials at each timepoint
in the first 250ms being described by a unimodal distribution, whereas after that point the two distributions could
be observed, separating trials in which the stimulus was missed from those in which it was consciously perceived.
Our model showed the same transition in time from unimodal to bimodal across-trial distributions. Previous studies in
humans have also shown how conscious perception is accompanied by an initial dynamic chain of activity states, before
a later more stable encoding phase (Dehaene and King 2016; Del Cul et al. 2007; Schurger et al. 2015; Sergent et al.
2005). Our model provides a simple explanation for both findings. Early stimulus processing, in both unconscious
and conscious mode, involves propagation of stimulus-specific information along the sensory hierarchy, in which
individual sensory areas are transiently engaged. However, this dynamic activity probably remains pre-conscious.
As the stimulus propagation is very similar on hit and miss trials, activity across trials can be well described by
a unimodal distribution at this stage. Conscious processing then differs from unconscious processing by engaging
sustained activity throughout the fronto-parietal network. This activity is relatively stable across time, and due to its
all-or-none nature, trial-to-trial late activity follows a bimodal distribution. While several studies have reported an
association between stable late activity and conscious access, others have reported that stable activity is only seen in
relatively high frequencies (3 and ), and is accompanied by a reliable dynamic trajectory in very slow frequencies (0
and sub-4, Baria et al. 2017; He 2018). It is possible that stable and dynamic activity coexist, if they belong to distinct
subspaces (Murray et al. 2017). We do not explicitly try to model this very slow cortical dynamic activity here.

Our model is agnostic as to whether the entire late distributed activity pattern represents conscious access alone, or
whether some of the activity could prepare a conscious report, or other post-access conscious processing (Cohen et al.
2020; Dellert et al. 2021; Pitts et al. 2018, 2012, 2014; Schlossmacher et al. 2020; Sergent et al. 2021). The task
that we simulated is not able to distinguish activity related to conscious access and response preparation. Sergent and
colleagues aimed to disambiguate these signals by presenting the same auditory stimuli to subjects during a task and
during task-free listening (Sergent et al. 2021). They found that the same stimulus leads to late sustained activity on
some trials, and not others. This late neural activity is predictive of both task-related reports, and reports of conscious
contents that are randomly sampled during task-free listening. This bimodal distribution of late activity across trials is
like what we see in the model. Late activity for both paradigms engaged a distributed fronto-parieto-temporal network.
However, only the report paradigm recruited areas around the premotor and supplementary motor cortex. This suggests
some separation of brain activity related to conscious-access and motor preparation. Simulation of activity patterns
during cognitive tasks in connectome-based dynamical models is in its infancy, and the types of tasks that have been
simulated are particularly simple (Froudist-Walsh et al. 2021; Mejias and Wang 2022). Future models may attempt
to tackle more complex task structures and disambiguate patterns of activity related to conscious access and distinct
post-access processes. This will require the development of large-scale models that are capable of selecting when to
recruit motor programs.

On some missed trials we could observe transient activity throughout the fronto-parietal network, that died back
to baseline. This is consistent with recent reports in humans that the spatial activity pattern for unrecognised and
recognised stimuli is similar, and differs mainly by the magnitude of activation (Levinson et al. 2021), and monkey
physiology studies showing transient prefrontal activity on some miss trials (Van Vugt et al. 2018).

Previous large-scale models have tackled stimulus propagation and cortical ignition (Chaudhuri et al. 2015; Deco et al.
2020; Dehaene et al. 2003; Dehaene and Changeux 2005; Joglekar et al. 2018; Schmidt et al. 2018; Van Vugt et al.
2018). However, the earliest of these models (Dehaene et al. 2003; Dehaene and Changeux 2005), while mimicking
the bimodal dynamics of conscious access, relied on a highly abstracted view of thalamo-cortical circuits. Indeed,
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they included only 4 simulated areas, and while they modeled AMPA, NMDA and GABA receptors with realistic
dynamics, their connectivity was not constrained by actual monkey or human data. Thus, while several of the igni-
tion phenomena reported here were already present, these more abstract models did not easily make a connection to
empirically measured physiological parameters. The second generation of previous models, on the other hand, did
take into account empirical data on the connectivity of the brain (Chaudhuri et al. 2015; Deco et al. 2020; Joglekar
et al. 2018; Schmidt et al. 2018). However, unlike the present work, these models all produce transient, and relatively
weak responses in prefrontal cortex. It is likely that none of these previous large-scale models would be capable of
reproducing the unimodal-to-bimodal transition pattern of temporal dynamics observed in this model and the data of
Sergent and colleagues (Sergent et al. 2021) and previous experimental work (Del Cul et al. 2007; Sergent et al. 2005).
Our model shows multistability (Golos et al. 2015; Strogatz 2018), in which a stimulus induces a dynamic bifurcation,
which leads activity to evolve to one of two steady states. This bears some resemblance to recent large-scale models
of working memory (Froudist-Walsh et al. 2021; Mejias and Wang 2022). While working memory signals generally
persist for a period of a few seconds, conscious perception can be much shorter, on the order of 200ms. Our results
suggest a shared mechanism between ignition and persistent activity associated with working memory. Behaviorally,
conscious access can be brief and incessantly switch to different percepts or thoughts, whereas working memory stor-
age is longer lasting. However, the difference between the two may not be fundamental. Indeed, a classifier trained
to decode the visibility of a stimulus in a conscious perception task from MEG activity can generalise to decoding
visibility from the early stages of activity during a working-memory delay period (Triibutschek et al. 2017). The dif-
ferences in later activity patterns could be explained by how a sustained signal is turned off in the brain, such as by a
corollary discharge signal during a motor response. This theoretical hypothesis remains to be tested experimentally.
Other aspects of the neural dynamics that separate conscious from unconscious processing, including the complexity
of pre- and post-stimulus neural activity (Goldman et al. 2019), and transient synchronisation (Melloni et al. 2007)
were not investigated here. These types of dynamics may be related to attractors other than steady states, such as
chaotic attractors and limit cycles (Wang 2021).

The NMDA/AMPA receptor ratio decreases along the macaque monkey cortical hierarchy.

In the working memory models, excitatory interactions are dominated by NMDA receptors. Our analysis of the cur-
rent model supports a previous proposition that feedforward connections should principally be mediated by AMPA
receptors, while feedback connections should principally be mediated by NMDA receptors (Dehaene et al. 2003),
and suggests that this arrangement is crucial for realistically fast ignition of fronto-parietal activity during conscious
perception. This led to the additional counterintuitive prediction that the proportion of NMDA receptors (compared
to AMPA receptors) should decrease along the cortical hierarchy. Testing this prediction using in-vitro receptor au-
toradiography data across the macaque cortex, we found that the ratio of NMDA to AMPA receptors decreases along
the cortical hierarchy, in agreement with our modeling prediction. This anatomical finding is corroborated by recent
findings of a similar reduction in the NMDA/AMPA ratio along the cortical hierarchy in the human brain (Goulas et al.
2021; Zilles and Palomero-Gallagher 2017). However, many aspects of the NMDA and AM PA receptor distribution
in the cortex remain to be characterised. For example, the in-vitro receptor autoradiography technique is blind to the
subcellular location of the receptors, and whether they are synaptic, or extra-synaptic. It is also possible that distinct
gradients of expression may emerge in different cortical layers. We recently described how cortical receptor distri-
butions in the macaque are dominated by a principal receptor gradient, which is aligned with the cortical hierarchy
(Froudist-Walsh et al. 2023). A similar receptor gradient has also recently been described in human cortex (Goulas
et al. 2021). We show that both NMDA and AMPA receptors per neuron increase along this gradient, but variations
in the intercept and slope of the gradient across receptors can have important functional implications. In particular,
our model suggests that the reduction in the NMDA/AMPA ratio along the hierarchy reflects an asymmetry in how
feedforward and feedback excitatory connections are mediated by these receptors, and that this asymmetry is crucial
for fast access of stimuli to consciousness.

Asymmetric feedforward and feedback excitation via AMPA and NMDA receptors reconciles contrasting
anatomical and physiological findings

We show that ignition of distributed fronto-parietal activity can occur rapidly, when inter-areal feedforward excitation
is predominantly mediated by AMPA receptors. In the model, when feedforward excitation was mediated by AMPA
receptors, ignition occurred within about 200ms. This figure closely matches the timescale of ignition of prefrontal
activity in monkeys performing a stimulus detection task (Van Vugt et al. 2018), and is similar to (but slightly quicker
than) proposed neural signals of conscious perception in the larger human brain (Del Cul et al. 2007; Salti et al. 2015;
Sergent et al. 2005; Sergent et al. 2021). Realistically fast access of stimuli to consciousness therefore necessitates a
relative increase of AMPA receptors in cortical areas that receive feedforward connections from the visual system.
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The differences between feedforward and feedback connections are functionally important, but also quite small in
quantitative terms. It is important to note that the asymmetry between feedforward and feedback connections that we
highlight results from the analysis of a parameter search. This combination of parameters produces the dynamical
activity patterns that best resemble those seen experimentally. Only limited experimental evidence exists regarding the
NMDA fractions at feedforward and feedback connections (Self et al. 2012). Similarly, few papers examine the net
excitatory or inhibitory effects of feedforward and feedback connections (Huang et al. 2019; Javadzadeh and Hofer
2022; Yoo et al. 2021). However, one recent paper shows that feedback connections have a slight net inhibitory effect
on their targets, which contrasts with the strong net excitatory effects of feedforward connections (Javadzadeh and
Hofer 2022). In the future, these model predictions should be tested experimentally, including with ultrastructural
analyses.

Physiological and computational studies of recurrent excitation in local circuits have emphasized the role of AMPA
receptors in primary visual cortex (Yang et al. 2018) and NMDA receptors in dIPFC (Wang et al. 2013; Wang 1999).
Reliance on the fast-acting AMPA receptors may facilitate the rapid encoding of stimulus information in V1, while
the slow dynamics of the NMDA receptor are thought to be crucial for the characteristic persistent activity seen dur-
ing working memory tasks. By going beyond local circuit considerations, we showed in this work that the density
of both NMDA and AMPA receptors per neuron increases along the cortical hierarchy (Fig 8B,C), which does not
contradict previous local area studies. The increasing density of NMDA receptors along the hierarchy, may account
for the commonly observed persistent activity in dIPFC, that is largely absent in V1 (Leavitt et al. 2017). This par-
allels the increases in dendritic spines on layer 3 pyramidal cells, which is the most common site of local recurrent
excitatory connections (Elston 2007; Gonzélez-Burgos et al. 2019). We show that NMDA at local connections are
crucial for sustained activity to emerge. While much work has contrasted the response of V1 neurons during stimu-
lus presentation to dIPFC neuron activity during the delay period of working memory tasks, some neurons in dIPFC
also react transiently to a stimulus, although with a delayed onset. The transient response of these *Cue’ neurons in
dIPFC is largely abolished by AMPA receptor antagonists (Wang et al. 2013; Yang et al. 2018). This is consistent
with feedforward excitation of ’Cue’ neurons in dIPFC being mediated by AMPA receptors. Persistent activity may
be more reliant on NMDA receptors. However, NMDA receptors cannot act on their own in this function, as exci-
tation via AMPA or nicotinic receptors is also required to depolarize the cell and remove the magnesium block to
engage NMDA receptors (Van Vugt et al. 2020; Yang et al. 2013). NMDA receptors in V1 are largely responsible
for modulating late responses via inter-areal feedback connections, rather than the initial feedforward pass (Self et al.
2012). As all the inter-areal cortico-cortical connections that V1 receives are essentially feedback, this may account
for the larger NMDA/AMPA ratio in V1, even if relatively few local recurrent connections are via NMDA receptors.
Our simulations show that a model that closely matches the experimentally-observed NMDA and AMPA distributions
could produce robust stimulus propagation and ignition of fronto-parietal activity. The receptor-based model produced
ignition-like dynamics without the need for adjustment to any parameters in the model. This is because the require-
ment for a decreasing NMDA/AMPA ratio can be naturally fulfilled with feedforward excitation mediated by AMPA
receptors, and a greater contribution of NMDA receptors to feedback connections. Therefore, far from being incom-
patible, we suggest that the same asymmetry in feedforward and feedback connections produces both the decreasing
anatomical NMDA/AMPA gradient, and the dynamic physiological activity that produces rapid responses to stimuli
and sustained firing in prefrontal cortex.

The brain mechanism of false alarms

While subcortical structures such as the thalamus and neuromodulatory centres are known to play an important role in
conscious access (Schiff et al. 2007; Suzuki and Larkum 2020), here for simplicity their contribution was summarized
by a single scalar vigilance signal (similar to Dehaene et al. 2003; Dehaene and Changeux 2005). A sufficiently
high level of this vigilance signal was critical to enable the model to accurately detect incoming stimuli. In macaque
monkeys, stimulation of the thalamus can reverse unconsciousness induced by propofol anaesthesia (Bastos et al.
2021). Recent evidence in humans suggests that several subcortical structures show increased activation when stimuli
are perceived, but may not contain content-specific information (Levinson et al. 2021). This is also consistent with
our recent work, which suggests that content-independent dopamine release in the cortex enables the engagement of
distributed, sustained activity in working memory (Froudist-Walsh et al. 2021). Facilitation of sustained fronto-parietal
activity by subcortical nuclei could be a shared network mechanism for working memory encoding and conscious
perception. However, in the model, the increased vigilance signal also led to an increase in false alarms. In the
mouse brain, increased tonic dopamine levels are seen before false alarms (Schmack et al. 2021), which may indicate
this as one contributor to the vigilance signal. We found that a high vigilance signal also led to an increase in the
pre-stimulus cortical firing rate. Increased ’pre-stimulus’ activity is also predictive of false alarms in humans and
non-human primates (Podvalny et al. 2019; Van Vugt et al. 2018). In both experimental recording data in macaques
(Van Vugt et al. 2018), and the model, trial-average activity in dorsolateral prefrontal cortex exhibited a slow upward
ramp. By analysing individual false-alarm trial data, the model predicts that on individual trials, false-alarms should
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be accompanied by sudden jumps, not gradual ramps, in dorsolateral prefrontal activity. We also observed that the
spatio-temporal dynamics of ignition on false-alarm trials differed from ignition on hit trials. In particular, ignition on
false-alarm trials did not originate from activity in sensory areas. Rather, the model suggests that false alarms arise
from sudden jumps of activity in higher cognitive areas that spread rapidly throughout a wide cortical network. This
model prediction can be tested experimentally.

Experimentally, a slow pre-stimulus ramp in activity is sometimes seen on hit and miss trials at a lower level than
on false alarm trials (Van Vugt et al. 2018). We did not observe pre-stimulus ramps in activity on hit or miss trials.
In the brain, this could be related to commonly observed dopamine ramps (Howe et al. 2013; Kim et al. 2020), and
may reflect a preparation to act, proximity in time to a reward, or a ramping estimate of the value of the current state
(Gao et al. 2021). Future models could include ramping vigilance signals, or dynamical interactions with subcortical
nuclei that may produce these dynamics. A subcortical vigilance signal may also signify a contribution of these
subcortical structures to the level, rather than the contents of consciousness (Bastos et al. 2021; Solt et al. 2014).
This suggests that subcortical activity may not be sufficient to encode the specific content of consciousness, but may
be necessary for any conscious state to exist. The necessary brain areas for consciousness are still under debate. In
the future, simulated lesions to different brain areas and networks in the model could create testable predictions for
experiments on consciousness. In principle, small cortical lesions to peripheral areas (outside of primary sensory
cortex) in our model may result in little-to-no change in the ability of the model to produce ignition, while larger
lesions, particularly to core regions of the fronto-parietal network (Mejias and Wang 2022) or regions with a high
density of neuromodulatory receptors (Froudist-Walsh et al. 2021) could impair the ability of the whole network to
sustain the bistable dynamics associated with conscious access.

Therefore, going forward, our model can provide a computational platform to connect research on the level and content
of consciousness. Among open questions are: what is the nature of neural activity underlying false alarm, is it really
a vigilance signal or prior expectation of a specific upcoming stimulus (Podvalny et al. 2019; Powers et al. 2017,
Schmack et al. 2021)? Is such a signal localized in specific brain regions; if so, where? What might be a neural circuit
mechanism for combining a prior expectation signal with an actual stimulus to generate perception, as proposed by
predictive coding (Bastos et al. 2012)?

Integration of the model in the consciousness literature

The present work proposes a neural mechanism for conscious access, the cognitive function that lets a stimulus enter
in the current stream of consciousness (James 1890) and makes it reportable, verbally or non-verbally (Baars 2005;
Dehaene et al. 1998). The other cognitive functions associated with consciousness, such as metacognition, self-
awareness, or any form of attention, are not addressed. Two major current theories of consciousness, among many
(Seth 2007), are Global Neuronal Workspace theory (Dehaene et al. 2003) and Integrated Information Theory (IIT)
(Tononi 2004). Our model fits in the GNW literature, as it possesses the major characteristics of the Global Workspace,
namely independent sensory modules competing to pass their information to a widely distributed set of areas that
broadcast the information to vast parts of the cortex. It differs from previous computational models of the Global
Neuronal Workspace in that it is built explicitly on mesoscopic connectome data, and (for Figure 8) incorporates
anatomical gradients of glutamatergic receptors. The core of associative areas responsible for ignition in the model,
heterogeneously connected by the FLN matrix, looks similar to the specialized majority network taken as an example
of a high Phi complex (Oizumi et al. 2014) as stated by the IIT for the origin of Phenomenological Consciousness
(Tononi 2004). However the location of the cortical areas, predominantly in frontal and parietal cortex seems to fit
more precisely with GNW theory than IIT, which attributes conscious perception primarily to a posterior cortical ’hot
zone” (Koch et al. 2016). Further anatomically-constrained large-scale modelling, or analysis of our model, could
make explicit the areas of agreement and disagreement between GNW and IIT. Future work addressing aspects of
metacognition, attention, predictive processing, emotional awareness, conscious volition or conscious thinking could
aim to further bridge GNW with other prominent theories of consciousness (Fleming and Lau 2014; Graziano and
Webb 2015; He 2023; Lau and Rosenthal 2011; Seth and Hohwy 2021; Shea and Frith 2019), and provide much-
needed testable predictions about behaviour and neural dynamics to distinguish between such theories (Demertzi et al.
2019; Melloni et al. 2021; Yaron et al. 2021).

Our current model was specifically designed to replicate brain activity triggered by a brief, faint stimulus. This
approach is often used in the study of neural correlates of conscious perception (Sergent et al. 2021; Van Vugt et al.
2018). Despite this, there is a host of other experimental paradigms where the identical stimulus can alternatively be
perceived or missed. These paradigms include masking (Del Cul et al. 2009; Kouider and Dehaene 2007), attentional
blink (Asplund et al. 2014; Kranczioch et al. 2005), and binocular rivalry (Hesse and Tsao 2020; Kapoor et al. 2022).
Recent advancements in no-report binocular rivalry experiments have unveiled precise patterns of activity in temporal
and prefrontal cortex. These studies allow for effective decodability of the conscious percept in both the Infero-
temporal cortex (Hesse and Tsao 2020) and the lateral prefrontal cortex (Kapoor et al. 2022). Future work could
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investigate the network activity during such experiments, replicating these precise electrophysiological results and
enabling predictions at the whole cortex scale.

Conclusions

We built a connectome-based dynamical model of primate cortex, that successfully accounted for salient results on
the spatiotemporal activity and behavior of primates performing tasks designed to assess conscious access. Our model
predicts that feedforward excitatory connections should be dominated by AMPA receptors for rapid propagation of
stimulus-related activity, while NMDA receptors in local recurrent connections and feedback projections are required
for the ignition and sustained activity that accompanies conscious access. Our model reconciles seemingly contradic-
tory anatomical and physiological data on the relative proportion of AMPA and NMDA receptors along the cortical
hierarchy, and takes a step towards a cross-level (bridging network, cellular and synaptic mechanisms) theory of con-
sciousness.
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Materials and Methods

Model overview

We developed a connectome-based dynamical model of the macaque cortex to investigate the synaptic and network
mechanisms underlying the ignition of distributed neural activity that accompanies conscious perception. We sim-
ulated local cortical circuits at each of 40 cortical areas and set the existence and strength of directed connections
between areas using retrograde tract-tracing data. Cortical areas differed based on their inter-areal connectivity and
dendritic spine count on pyramidal cells. As a starting point, we adapted a recently developed model of distributed
working memory in 30 cortical areas (Mejias and Wang 2022).

Retrograde tract-tracing data

The inter-areal connectivity data in this paper was acquired by Henry Kennedy and colleagues as part of an ongoing
effort to map the cortical connectome of the macaque using retrograde tract-tracing (Markov et al. 2014, 2012; Markov
et al. 2013; Mejias et al. 2016). Here we use the directed, weighted connectivity data between 40 cortical areas, which
was recently released (Froudist-Walsh et al. 2021).

A few details of how the connectivity data was collected and processed will help the reader understand the connectome-
based dynamical model. For each target area, a retrograde tracer was injected into the cortex. The tracer was taken up
in the axon terminals in this area, and retrogradely transported to the cell bodies of neurons that projected to the target.
The cortical areas () that send axons to the target area (k) are called source areas. For a given injection, all marked
cell bodies in the cortex outside of the injected (target) area was counted as labeled neurons. The number of labeled
neurons (LN) within a source cortical area was then divided by the number of labeled neurons in the whole cortex
(excluding the target area), to give a fraction of labeled neurons (FLN). The FLN was averaged across all injections in
a given target area. For this calculation, we include all cortical areas ( n%"°*® = 91 ) defined in the Lyon atlas (Markov
et al. 2012).

LN,
FLNj = narcas[k’l]

s (D
=1 LN

Note that there are 91 cortical areas in the Lyon atlas, and currently 40 areas have been injected with retrograde tracers.
This gives the connection strength from all 91 areas to the 40 injected areas, and the full bidirectional connectivity of
a subgraph of 40 areas. We use this 40-area subgraph as an anatomical basis for the dynamical model.

In addition, for each inter-areal connection we defined the supragranular labeled neurons (SLN) as the fraction of
neurons in the source area whose cell bodies were in the superficial (aka supragranular) layers.
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LNy

supra infra
LN[k,ﬁ + LN[k,l]

SLNj ) = (2)

The subiculum (SUB) and piriform cortex (PIR) have a qualitatively different laminar structure to the neocortical
areas, and therefore supra- and infra-laminar connections (and thus the SLN) from these areas are undefined. We
removed all connections from these areas from the following calculations ( n®"¢?*SLN — 89 ). These connectivity
data are available on the core-nets website (register, click the "Download” button, and select the data associated with
Froudist-Walsh et al. 2021).

Dendritic spine data

The spine count data were taken from a series of studies by Elston and colleagues (Elston 2007) and mapped onto
the Yerkes19 cortical surface (Donahue et al. 2016), as described in (Froudist-Walsh et al. 2021, 2023). Locations
on the Yerkes19 cortical surface are represented by 32,492 vertices. The spine count data was obtained by Elston
and colleagues from 27 injection sites across the cortex. For each injection site we estimated the number of vertices
overlapping with each area in the Lyon atlas. If a cortical area contained only one injection site, the mean spine count
from pyramidal cells in that site was taken as the spine count for the area. If a cortical area contained multiple injection
sites, we performed a weighted average of the spine counts, according to the number of vertices of overlap. In this
way we estimated the spine counts on pyramidal cells in 24 of the 40 injected regions in the Lyon atlas. Based on the
strong positive correlation between spine count and cortical hierarchy (r = 0.61, p = 0.001), and following previous
work (Chaudhuri et al. 2015; Froudist-Walsh et al. 2021; Mejias and Wang 2022), we inferred the spine count for the
remaining regions based on the hierarchy using linear regression.

Local cortical circuit architecture

In each cortical area we simulated a local circuit, with two interacting excitatory populations (£; and E5), and one
population of inhibitory (I) neurons. This is based on a mean-field reduction of a spiking neural network model of
cortex (Wang 2002; Wong and Wang 2006).

Description of dynamical variables

The neural populations interact via synapses that contain NMDA, AMPA and GABA receptors. Each receptor has its
own dynamics, governed by the following equations.

The synaptic variables are updated as follows (Wang 1999; Wong and Wang 2006)

dsNMDA gNMDA MDA
d = - NMDA +(1_8 )’YNMDATE (3)
t T
dsAMPA GAMPA
o = —apa T (L= M ) ampare (4)
dsGABA SGABA
g = T GABA TGABATI &)

where s is the fraction of open synaptic ion channels due to bound receptors, 7 is the time constant of decay of that
receptor and Yxarpa, YA PA and Yo ap a4 are constants. rg and ry are the firing rates of the presynaptic excitatory
and inhibitory cells that stimulate the NMDA, AMPA and GABA receptors, calculated below.

NMDA/AMPA ratio

We explored the effects of different NMDA/(NMDA+AMPA) fractions, &, at local and long-range feedforward and
feedback connections. The values used for the main simulations, unless otherwise stated, are in Table 2.

Modulation of excitatory connections by dendritic spines

Approximately 90% of excitatory synapses on neocortical pyramidal cells are on dendritic spines (Nimchinsky et al.
2002). On this basis, we modulate the strength of excitatory connections according to the dendritic spine count.
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rTaw raw

X[k] — Xmin

Xkl = —0
W™ raw ™ yraw

for all cortical areas [k]. Xfw)” is the spine count for area k, and x7%% and X are the minimum and maximum spine

counts observed in the data. x[x) is therefore the spine count of area k rescaled to lie in the [0, 1] range.

We then apply the gradient of excitation as follows.
Zp K = Zmin + X[k](l _ Zmin) (6)

where 2" sets the lower bound for the modulation of excitatory connections by the spine count, x. z B, (k] therefore
defines how spine count modulates excitatory connections in area k.

Description of local currents

The local NMDA current onto each population Ei € {E1, E»} in area [k] is calculated as follows

NMDA,local __ l Il~NMDA,loc NMDA

Ei[k] =zpwk “Ggg SEi,[K] (N
Where zg [ is the dendritic spine count gradient, rklocal the NMDA receptor fraction of the postsynaptic population,
Gg%DA’ZOC the local NMDA coupling from the population to itself.

Local connections tend to target the perisomatic area (soma and proximal dendrites) of pyramidal cells (Kalisman
et al. 2005; Markram et al. 1997; Petreanu et al. 2009). The soma and proximal dendrites act as a single functional
compartment that is separate from a distal dendritic compartment (Yuste et al. 1994). As our dendritic function F'
(described below) models this distal dendritic compartment, we do not pass local excitatory connections through F'.

Similarly local excitatory connections via the AMPA receptors are scaled by the AMPA receptor fraction 1 — s,
AMPA,loc

the dendritic spine count gradient zp ], and G 1 the local AMPA coupling from the population to itself.
AMPA,local oca AMPA,loc
Bi,[k] =zl - ! l)GE,E sg%ﬁA @®)

Local inhibitory connections are not directly modulated by the dendritic spine count (as spines indicate excitatory
synapses on pyramidal cells, Nimchinsky et al. 2002).

GABA _ ~AGABA _GABA
Igi W = GET S ©)
Where G$}84 is the connection strength from the inhibitory pool to the excitatory pools.

In order to keep the spontaneous activity level similar across brain areas, the local NMDA input to the I population
increases with the spine count, and is defined as followed (Mejias and Wang 2022)

NMDA,local NMDA,loc 1
Ik =21, Gr Z sgij,v[lk?A (10)
Eie{E1,Es}
with ' _
zr =20 X (L= 27"") (11)

For the Main Figures in the manuscript, there is no local AMPA current targeting the inhibitory population. However,
including AMPA input to inhibitory cells does not significantly change the results.

Description of noise, background and vigilance currents

Noise is modeled as an Ornstein-Uhlenbeck process, separately for each population i in E1,E2,1.

, 1 is
AL () = = a1 ()dt + 0(1) 04 noise 12

where 0 y,0is¢ 15 the standard deviation of the noise and 7 is Gaussian white noise with zero mean and unit variance.
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A constant background current J Zb 9 was also added to each population (Table 2). This represents input from brain areas
that are not explicitly modeled.

In addition, we examined the effect of an extra, weak excitatory current, [ vig to each unit in associative areas (top
75% of areas ranked according to the hierarchy), which simulated the effect of vigilance on the model (Dehaene et al.
2003; Dehaene and Changeux 2005).

As a simplification, each of these currents targets the perisomatic compartment (i.e, it is not passed through the distal
dendritic function F).

Large-scale connectivity structure

In the model, cortical areas are connected using connectivity strengths derived from the retrograde tract-tracing data.
The long-range connectivity matrices are built from the FLN matrix. However, as noted in (Markov et al. 2014,
2012; Mejias et al. 2016), the FLN matrix spans 5 orders of magnitude. The relationship between anatomical and
physiological connectivity strengths is not clear, but if we were to use the raw FLN values in the large-scale model,
many of the weaker connections would become irrelevant. To deal with this, we rescale the FLN matrix in order to
increase the influence of smaller connections while maintaining the topological structure (Mejias et al. 2016; Mejias
and Wang 2022). We also divide by the total number of connections into each modeled area, so the the sum of
connections into each area in the model equals one, as in the original definition of FLN.

b
FLN[,;J]
Wik,l] = eub

b
=1 FLNy

13)

Here we restrict calculations to the injected cortical areas ¢, j, which allows us to simulate the complete bidirectional
connectivity structure within the subgraph (n*“® = 40 ). Note that intra-areal connections are not quantified in the
dataset. We use the same parameter value b1 as in (Mejias et al. 2016; Mejias and Wang 2022) (Table 2) to construct
our inter-areal connectivity matrix W .

Calculation of long-range currents

Excitatory cells in different cortical areas with the same receptive fields are more likely to be functionally connected
(zandvakiliCoordinatedNeuronalActivity2015). This is reflected in our model as follows. In the source area, there
are two excitatory populations, 1 and 2, each sensitive to a particular feature of a visual stimulus (such as a location in
the visual field). Likewise in the target area, there are two populations 1 and 2, sensitive to the same visual features.
We assume that the output of population 1 in the source area goes to population 1 in the target area, and the output of
population 2 in the source area goes to population 2 in the target area.

The total long-range connections mediated by the NMDA receptors on the excitatory population E; in area [k] is
calculated as follows:

TP = Gy (3 v (SENw o7 + (1= SN o)) )

The amount of long-range current onto the excitatory population F; in area k that comes via NMDA receptors depends
on the fraction of open synaptic ion channels due to occupied NMDA receptors and the
from all source areas [ that target area k. This is scaled by the
and the amount of dendritic spines per pyramidal cell (i.e. excitatory synapses) in area k. We separate
the superficial layer from the deep layer projections as they may be mediated by different receptor types and target
different cell types. Equations (16 - 19) can be understood similarly.

Note that distinct layers were not explicitly simulated in the model. However, in the real brain, connections from
superficial and deep layers may have different impacts on brain dynamics. Therefore, we allowed the cell-type targets
and receptors mediating interareal connections from superficial and deep layers to be variables. We investigate the
impact of modifying these variables in Figure 2.

To be precise, G P4 is the global coupling for NMDA-mediated inter-areal connections, 2 £,[x] 18 the dendritic spine

count value for area k (as defined above), Wik, is the anatomical connection strength from area [ to area k, SLN, [%,1]
is the fraction of neurons projecting from area [ to area & that have their cell bodies in the superficial layers (as above),

kN7 is the fraction of excitation that is mediated by NMDA receptors for connections from superficial layers, p5"”
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is the fraction of superficial layer projections targeting excitatory cells and sm MDA s the NMDA synaptic gating

variable from the corresponding excitatory population in source area [. Similarly, m‘f\f is the fraction of excitation

from deep layer projections mediated by NMDA receptors, and pdEp is the fraction of deep layer projections targeting
excitatory cells. ¢ = 1, 2 denotes the excitatory population.

Long-distance connections tend to target more distal parts of the dendrites (Petreanu et al. 2009), which act as a
functionally separate compartment from the perisomatic area (Yuste et al. 1994). For this reason, we pass the long-
distance connections through the dendritic function F' before they reach the soma.

Similarly, the total long-range connections of the excitatory population in area [k] mediated by AMPA receptors is
calculated as follows:

sub

gy 5 = GEMP g (Z Wik (SN (1 — k3 pp™ + (1 = SLNp ) (1 - ﬁ%’)ﬂ%p>8§%}PA> (1)
=1

where (1 — x3") and (1 — n%’) are the fraction of inter-areal connections from superficial and deep layers mediated

by AM P A receptors. This is scaled by the global excitatory AMPA coupling strength (G4MF4).

The total excitatory long-range current in then computed as follow:

LR NMDA,LR , jAMPA,LR
Igig = F (IEi[k] + I ) (16)

The function F'is a simplification of a dendritic function used in previous local and large-scale models (Froudist-Walsh
et al. 2021; Yang et al. 2016). It helps the network stabilize, and avoid epileptic behaviours.

0pA for X <0pA
F(X)= { 300pA, for X > 300pA } (17
X otherwise

)

The total long-range connections targeting inhibitory population in area [k] that are mediated by NMDA receptors is
calculated as follows:

sub

I PR = GYMPAL) (Z Wik (SLNp P (1 — pia®) + (1 — SLNp ) K2 (1 — p‘g’))smMDA> (18)
=1

where (1—p3") and (1— pdEp) are the fraction of feedforward and feedback inter-areal connections targeting inhibitory

cell populations. We assume different effective strengths for long-range connections targeting excitatory and inhibitory
pools, captured by GNMP4 and G4MPA | Although cortical inhibitory interneurons do not contain dendritic spines,
we assume that the level of excitation onto inhibitory scales similarly with the spine count. This has been shown to be
an effective way of maintaining spontaneous activity levels across areas (Mejias and Wang 2022).

The total long-range connections targeting the inhibitory population in area [k] that are mediated by AMPA receptors
is calculated as:

sub

I}L‘[I?]IPA’LR = GPM e <Z Wik i) (SN (1= £ 37) (1= p3'") + (1= SLNp ) (1= K3 (1= PdEp))SﬁMPA)
=1
19)

with all variables as described above.

Application of external stimuli for tasks

In all simulations, the stimulus is applied for 50ms to excitatory population 1 in area V1. In the brain, visual input from
LGN to V1 targets layer IV local excitatory neurons, which then excite the perisomatic areas of layer III pyramidal

cells. For this reason we model external input to the perisomatic compartment of excitatory neurons in V1 (i.e., it is
not passed through the dendritic function F'). In all equations, the stimulus is designated by the term [$!™,
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Total current in large-scale model

The total current for each neural population ¢ in each area k equals the sum of all long-range, local and external inputs,
and intrinsic currents,

total NMDA,LR AMPA,LR NMDA,local AMPA,local GABA,local noise b stim Vi
i = F(Lpy, )+ F (L, )+ 1L L L LR+ 1 L+ 1
(20)
total NMDA,LR | yAMPA,LR | tNMDA,local AMPA,local GABA,local noise , 70
Il[k] = II[k] JrII[k] JrII[k] JrIl[k] JrIl[k] JrIl[k] +IIg 2D
where ie{ E'1, Es}, (El: excitatory population 1; E2: excitatory population 2; I: inhibitory population).
Description of f-I curves
The f-I (current to frequency) curve of the excitatory population is
aItotal —b
pgtty = £ 22)

1 — e—d(alip™—b)

where 749'%! is the total input to the population, a is a gain factor, d determines the curvature of f(I1%*%!), such that if
d is large, f(1%%) acts like a threshold-linear function, with threshold b (Abbott and Chance 2005).

The f-1 curves for the inhibitory neuron populations are modeled using a threshold-linear function

totaly __ ﬂi(I}Ota’l - Ith) for I}Otal 2 Ith
IS { 0, otherwise (23)

where 7¢°t% is the total input to the population, /3; is the gain and Iy, is the threshold.
See Table 2 for parameter values.
The firing rates are updated as follows
Trﬂ _ _r_|_f(ltotal) (24)

dt
for all cell types.

Classification of model dynamics

This corresponds to the analysis in Figure 3A.

Model 0: Null Model
In this model, the external input has no effect on the activity. Irrespective of whether a stimulus was presented or not,
and irrespective of its strength, activity follows a Gaussian distribution centered on p with a standard deviation of .

(@ —p)?
polactivity = x|l = I) = e 207 (25)

There are two free parameters: p and o

Model 1: Unimodal Non-Linear

In this model, the activity evoked for each stimulus strength I follows a Gaussian distribution centered on a mean p
- following a sigmoid function of I - and a standard deviation o, following a linear function of the mean p. For this
model, the probability to reach activity level x for an input [ is given by:

(z — p(D))?
p1(activity = ©|Isim = I) = #6_ 20(1)? (26)
o(I)v/2m
with
Hmaz — Hmin
u(I) = T o—k(I—To) + Hmin (27
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and
O-(I) = O'slopeu(j) + Ointercept (28)

There are six free parameters: Umaz, Umin> K> 10, Osiope AN Tintercept

Model 2: bifurcation

In this model, the activity evoked for each stimulus strength I has a probability 5(I) to belong to a high state (Gaussian
distribution centered on 45, of variance op;gr), and a probability (1 — 5(I)) to belong to a low state (Gaussian
distribution centered on 1., of variance ;,,,, the baseline activity observed in the absence of stimulation). For this
model, the probability to reach activity level = for an input I is given by:

_ (l’ - ,Ufh,igh)2
1 20}21igh

pa(activity = x|l = 1) =) | ———=c¢
i O'hi,gh\/ﬂ

(29)
(T — piow)
B[ — e i
O—low\/ﬂ
with
1
B(I) = 14 o—F0—To) (30)

There are six free parameters: Upigh, [iow> Thighs> Tlow, k and Iy
Bayesian model comparison

We compared the performance of the different models simulating 100 simulations for four different input current
values (400 trials in total). The activity was sampled every 40ms and the activity was averaged over all 40 areas. The
best parameters for each model were estimated by maximum likelihood, i.e., by finding the parameters maximizing
the product of the likelihoods across the different trials (or, equivalently, maximizing the sum of the log likelihoods).
The parameter search was achieved using the scipy.optimize function. In order to compare our different models, we
used the following formula, where P(M;|z(t)) is the posterior probability of the model i € {0, 1,2} at the time step
t (Lebarbier and Mary-Huard 2004).

BIC;(t) — MIN;cq0,1,2y(BIC;(t))
e 2
BIC;(t) — MIN;cg0,1,2y(BIC;(t))

Zie{O,l,Q} e 2

P(M;|a(t)) = €20

where BIC;(t) correspond to the Bayesian Information Criterion of model 4 at time step ¢ for the best parameter set
of this model.

Temporal generalization of stimulus detection decoders

To decode the trial outcome from instantaneous trial activity patterns, we first separated the data from 400 trials into
a training set (300 trials) and a test set (100 trials). All trials received a near-threshold (50% detection rate) stimulus
input to population E1 of area V1. The combined training and test set contained 200 hit and 200 miss trials, and these
were randomly shuffled and allocated to the training and test sets.

As activity in region 9/46d was used to read out the trial outcome, we trained the classifier on activity in all other
areas. Trials were considered a "Hit’ if the mean activity in area 9/46d in the last 500ms before the end of the trial
was greater than 15Hz, and a "Miss’ otherwise. We trained each support vector classifier using scikit-learn in Python
and standard parameter settings (Pedregosa et al. 2011). A separate classifier was trained for each timepoint in the
training data. We then used each of these classifiers to predict the trial outcome based on activity at each time point
in a separate test set. Finally, we compared these predictions to the actual trial outcome (defined according to the late
sustained activity in 9/46d).
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To estimate whether the coding pattern is similar between times ¢ and ', we can train a classifier at time ¢ (across trials)
and test it at time ¢'. When applied across all pairs of timepoints, this leads to a square 7" x T temporal generalization
matrix, where 7" is the number of timepoints (King and Dehaene 2014; King et al. 2016; Meyers et al. 2008).

We assessed the strength of correlation between decoder coefficients (for the decoder trained at each timepoint) and
the cortical hierarchy using Pearson correlations (Fig 3E). We conservatively judged the correlation at a particular
timepoint to be significant only if the p value was less than 0.001 for all timepoints within a 10ms period centered on
the timepoint.

Statistical comparisons of ignition times on hit and false-alarm trials

To compare the ignition times of higher cognitive and sensory stream networks on hit and false alarm trials (as shown
in Figure 6C,D), we performed a non-parametric statistical analysis. In our categorization, sensory stream networks
encompass the visual, somatomotor, and dorsal attention networks. Meanwhile, higher cognitive networks include the
default mode, salience, limbic, and fronto-parietal networks. Network labels were assigned to individual regions using
cross-species functional alignment (Froudist-Walsh et al. 2023; Xu et al. 2020).

Our aim was to investigate whether the difference in ignition times between higher cognitive and sensory stream
networks was significantly influenced by the type of trial - hit or false alarm. We conducted 1000 simulations of each
trial type and used the following approach:

We first identified areas that showed ignition, defined as a jump from a low activity state (< 5H z at trial start) to a
sustained high activity state (> 15Hz for the last 50ms of the trial). We calculated the ignition time for each area,
defined as the earliest time step at which the area activity exceeded 15H z. For each trial, we separately calculated the
average ignition time for areas in higher cognitive networks and sensory stream networks. Next, we determined the
difference in mean ignition times for each trial by subtracting the mean ignition time of the sensory stream areas from
that of the higher cognitive areas.

The null hypothesis is that there is no effect of trial type (hit vs. false alarm) on relative ignition times (of higher
cognitive vs sensory stream networks). Therefore, under the null hypothesis, the labeling of trial types as hit and false
alarm is arbitrary, because the same data would have arisen whatever the trial type. We can therefore calculate the
p-value for the effect of trial type on relative ignition times by comparison with the distribution of relative ignition
times obtained when the trial type labels are permuted (10,000 times, Bullmore et al. 1999; Nichols and Holmes 2002).

In-vitro receptor autoradiography

Quantitative in-vitro receptor autoradiography was applied to determine the densities of NMDA and receptors in
cytoarchitectonically identified cortical areas of the macaque monkey brain (Impieri et al. 2019; Niu et al. 2020, 2021;
Rapan et al. 2021, 2022a,b).

Brain tissue was shock frozen at -40°C in isopentane, hemispheres serially sectioned in the coronal plane at 20um
by means of a cryomicrotome, and sections thaw mounted onto glass slides. Alternating sections were processed for
the visualization of cell bodies (Merker 1983) or of receptor densities according to previously published established
protocols (Palomero-Gallagher and Zilles 2018; Table 1). In short, receptor incubation protocols consisted of a prein-
cubation to rehydrate sections and remove endogenous ligands, a main incubation, and a washing step to stop the
binding process and remove surplus ligand and buffer salts. The main incubation encompassed parallel experiments
to identify the total and non-specific binding of each ligand, whereby sections were incubated with the radiolabeled
ligand alone or with the radiolabeled ligand in conjunction with a non-labelled displacer, respectively.

Radiolabelled sections were co-exposed with plastic standards calibrated to account for total brain protein content
and with known concentrations of radioactivity against tritium (3H) sensitive films. The ensuing autoradiographs
were digitized with an 8-bit grey value resolution for densitometric analysis (Palomero-Gallagher and Zilles, 2018).
Hereby, calibration curves computed by non-linear, least-squares fitting were used to define the relationship between
gray values and concentrations of radioactivity derived from the plastic standards. Radioactivity concentrations (R; in
counts per minute, cpm) were converted to binding site concentrations (C'b; in fmol/mg protein) using the following
equation:

B R Kp+L
T E-B-W,-S, L

Cy (32)

Where E is the efficiency of the scintillation counter, B is a constant representing the number of decays per unit of
time and radioactivity (Ci/min), Wb the protein weight of a standard (mg), Sa the specific activity of the ligand used

28


https://doi.org/10.1101/2022.02.20.481230
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.20.481230; this version posted July 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

A PREPRINT - JULY 11, 2023

to label the target receptor (Ci/mmol), K p the dissociation constant of the ligand (nM), and L the concentration of
the ligand in the main incubation buffer (nM; determined by scintillation). Thus, the gray value of each pixel in a
receptor autoradiograph could be transformed into a receptor density in fmol/mg protein. The location and extent of
each cytoarchitectonically identified area was transferred to the neighboring autoradiographs and, for each receptor
type separately, the mean (averaged over all cortical layers) of the grey values contained in 3-5 sections of the area in
question was transformed into a receptor concentration per unit protein (fmol/mg protein).

Table 1: Incubation protocols

Table 1 AMPA NMDA

[®H]-Ligand AMPA (10 nM) MK-801 (3.3 nM)

Displacer quisqualate (10 uM) MK-801 (100 yuM)

Incubation buffer 50mM Tris-acetate (pH 7.2)  50mM Tris-acetate (pH 7.2)
+ 100 mM KSCN* + 50 uM glutamate

+ 30 uM glycine*
+ 50 uM spermidine*

Preincubation 3 x 10 min, 4°C 15 min, 4°C
Main incubation 45 min, 4°C 60 min, 22°C
Final rinsing 1. 4 x4 sec, 4°C 1. 2 X 5 min, 4°C
2. 2 x 2sec in 100/2.5 2. rinse in distilled water,

acetone/glutaraldehyde, 4°C 22 °C
* substance only included in buffer for the main incubation

Receptor data-based model

For the receptor data-based model, we matched the total NMDA fraction to that seen in the data, adjusting for a
constant mean shift between the model and receptor data.

We calculate the overall NMDA fraction X ] mo4e1(fraction of NMDA receptors over total number of excitatory
receptors) in each area of the model.

X[k],model = NMDA[;C]/(NMDA[]C] + AMPA[k]) (33)

where NM DAy, and AM P Ay, are the total local and inter-areal connections mediated by each receptor type.

Here
NMDAy = Nigip g+ Nigt.e + Nji o
NMDA,, = N[l,g’ﬁ;,E—&—N[l,f]‘},E—i—N[lg]E,E""N[ZI:II:E 33)

With:
N, [l,;’]"E g the number of NMDA receptors on the excitatory neurons coming from local connections.

N, [l,;’]‘I g the number of NMDA receptors on the inhibitory neurons coming from local connections.

N, [lkr] the total number of NMDA receptors coming from long-range connections.

N, [lkr] B.E the number of NMDA receptors on the excitatory neurons coming from long-range connections.
N, [l,;] ILE the number of NMDA receptors on the inhibitory neurons coming from long-range connections.

NMDA,loc AMPA,loc
In the model, G "~ ""°“and G, i *"%¢ are set as follow:

NMDA,loc AMPA,loc
GM e

EE _ loc
gAMPA - GE,E (36)

NMDA
)

With ¢gVMDPA the conductance due to one bound NMDA receptor and g4 74 the conductance due to one bound

AMPA receptor. We also define:
GN,loc
ILE

_ ploce
gNMDA - GI,E (37

This equations can be expanded based on Equations (7), (10), (14) and (17)
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NMDAy, =zp 1K' G8%

loc

+ 211G E

nsub

+25,WGo e Y Wiy (SLNpya™Pp™ + (1 — SLNy )& p™) (38)
=1
nsub
+ Zj[k]Gl;:E Z w[k,l](SLN[k’l]mS"”(l — p‘mp) + (1 — SLN[k’l])Iﬁdp(l — pdp))
=1

loc

In the reference model, used throughout Figures 1-7, x'°¢ is the same across all cortical areas.

Similarly:

AMPAy = Affp 5 + Alf (39)

AMPA; = Affp g+ Alp.e + Albre (40)

It is worth noting that their are no local AMPA connections targeting the inhibitory pool.

AMPA, =zp 3y (1 — £'°°)G'8%

nsub

+ 250G E e > Wiy (SLNy (1 — £7)p*™ + (1 = SLNy.)(1 — &%) p) @D
=1

nsub
+ 21w GY g Z Wik (SLNpe (1 = &%) (1 = p*P) + (1 = SLNp ) (1 — £7)(1 = p))
=1

In practice, both NM D Ay, and AM P Ay, should be doubled (to represent the two excitatory populations), but as this
affects all terms in the numerator and denominator, it will not affect the fraction X{y;.

We show in Figure 2 how the proportion of superficial and deep layer projections mediated by AMPA and NMDA
receptors should lie in a particular range in order to enable rapid ’ignition’ of cortical activity. Therefore, for the
receptor data-based model, we treat these long-range feedforward and feedback NMDA and AMPA fractions as fixed.
We then set the overall NMDA fraction in each area to match the experimentally-measured value Xx) ga¢q- shifted by
a constant term c to account for the a mean shift between the raw receptor data and the reference model used in the
rest of the paper. We can then calculate the local NMDA fraction /ifg]c“l in each area required to match the observed

NMDA fraction distribution across the cortex.

By reorganising equations 33 - 41, we can compute the local fraction /—@fz]c‘” as a function of network parameters and

real receptor data X(z) gasq- We forced nl[z]cal to lie between 0 and 1 using a clip function.
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Table 2. Parameters for Numerical Simulations
Parameter Description Value
FNMDA rAMPA E synaptic time con- 60ms,2ms
stants
NMDA g AMPA Channel Conductances 1000pA, 10000pA
TGABA I synaptic time constant Sms
T Firing rate time constant 2ms
YNMDA> YAMPA> YI Synaptic rise constants 1.282,2,2
RSP, P plocal NMDA fraction 0.,0.8,0.91
psup, pp Long-range E/I targets 1.,0.015
Zmin Min excitation value 0.6
Zmin Min excitation value 0.218
Onoise std. dev. of noise 2.5pA
1%, 1% Background inputs 329.4pA, 260pA
a, b, d f-I curve (E cells) 0.135 Hz/pA, 54Hz,
0.308s
Bi, Itn f-I curve (I cells) 153,75Hz/nA, 252Hz
by Rescale FLN 0.3
Gge Excitatory NMDA 480pA
strengths
Gy Excitatory AMPA 4800pA
strengths
Gy Excitatory NMDA 10pA
strengths to the Inhib
Unit
9E.I> 91,1 Inhibitory strengths -8800pA, -120pA
GNDPMDA GNMDA Long-range NMDA 1500pA, 10.5pA
strength
GAMPA GAMPA Long-range AMPA 15000pA, 105pA
strength
Gy Local balanced coupling 215pA
Istim Stimulus strength 250pA

Please note that this is a current-based model, so all synaptic strengths area given in units of pA.
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