001     1018255
005     20250701125847.0
024 7 _ |a 10.34734/FZJ-2023-04651
|2 datacite_doi
037 _ _ |a FZJ-2023-04651
041 _ _ |a English
100 1 _ |a Kannis, Chrysovalantis
|0 P:(DE-Juel1)178627
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 25th International Spin Symposium
|g SPIN2023
|c Durham
|d 2023-09-24 - 2023-09-29
|w USA
245 _ _ |a A universal method to polarize atoms, molecules, and their ions for accelerators, nuclear fusion, or medical applications
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1700559817_20773
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Our study of atomic beams passing through a static magnetic field, whose direction reverses along the axis of motion, gave rise to a new, versatile polarization method. For instance, a sinusoidal magnetic field entails a radial component, which is proportional to the gradient in the longitudinal direction. Such a field can be generated by two opposing solenoid coils. As a particle beam travels through the coils, it experiences the static field as an electromagnetic wave in its rest frame. The longitudinal component creates an energy splitting between the atomic hyperfine states and the radial component induces transitions between them. The hyperfine transitions can be described by the absorption of an odd multiple of the corresponding photon energy, so that the total photon energy is equal to the energy splitting between the states. The energy of the photons depends on the relative motion between the particle beam and the magnetic field (for a given wavelength of the sinusoidal field), and the number of the photons rises with increasing magnetic field strength. Therefore, oscillating transition rates are observed while ramping the magnetic field of the apparatus. As a result, it is feasible to achieve a high degree of polarization by adjusting the magnetic field strength. The produced polarization is higher for particles with simple hyperfine structures, e.g., H, D, $^3$He$^+$, etc. These species are required for the investigation of nuclear fusion with polarized fuel or polarized ion sources for accelerators. First measurements with metastable hydrogen beams will be presented. Furthermore, the applicability of this method to molecular samples (for medical applications) needs to be examined.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF4-612)
|0 G:(DE-HGF)POF4-612
|c POF4-612
|f POF IV
|x 0
650 2 7 |a Nuclear Physics
|0 V:(DE-MLZ)SciArea-200
|2 V:(DE-HGF)
|x 0
650 1 7 |a Nuclei and Particles
|0 V:(DE-MLZ)GC-2001-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Aswani, Sahil Vijaykumar
|0 P:(DE-Juel1)191053
|b 1
700 1 _ |a Büscher, Markus
|0 P:(DE-Juel1)131108
|b 2
|u fzj
700 1 _ |a El-Kordy, Tarek Ahmed
|0 P:(DE-Juel1)184390
|b 3
700 1 _ |a Engels, Ralf W.
|0 P:(DE-Juel1)131141
|b 4
|u fzj
700 1 _ |a Faatz, Nicolas
|0 P:(DE-Juel1)192187
|b 5
|u fzj
700 1 _ |a Hanhart, Christoph
|0 P:(DE-Juel1)131182
|b 6
|u fzj
700 1 _ |a Kunkel, Lukas
|0 P:(DE-Juel1)194961
|b 7
|u fzj
700 1 _ |a Lehrach, Andreas
|0 P:(DE-Juel1)131234
|b 8
|u fzj
700 1 _ |a Sefzick, Thomas
|0 P:(DE-Juel1)131326
|b 9
|u fzj
700 1 _ |a Soltner, Helmut
|0 P:(DE-Juel1)133754
|b 10
|u fzj
700 1 _ |a Zheng, Chuan
|0 P:(DE-Juel1)177964
|b 11
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1018255/files/spin2023_kannis_public.pptx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018255
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)192187
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)194961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)133754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)177964
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-612
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-2-20111104
|k IKP-2
|l Experimentelle Hadrondynamik
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-4-20111104
|k IKP-4
|l Kernphysikalische Großgeräte
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 3
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 4
920 1 _ |0 I:(DE-Juel1)IKP-TA-20111104
|k IKP-TA
|l IKP- Technische und Administrative Infrastruktur
|x 5
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IKP-2-20111104
980 _ _ |a I:(DE-Juel1)IKP-4-20111104
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-Juel1)IKP-TA-20111104
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21