001     1018304
005     20250129092420.0
024 7 _ |a 10.1109/ESSCIRC59616.2023.10268801
|2 doi
024 7 _ |a WOS:001088613100041
|2 WOS
037 _ _ |a FZJ-2023-04689
100 1 _ |a Schreckenberg, Lea
|0 P:(DE-Juel1)180854
|b 0
|e Corresponding author
111 2 _ |a ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC)
|c Lisbon
|d 2023-09-11 - 2023-09-14
|w Portugal
245 _ _ |a SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature
260 _ _ |c 2023
|b IEEE
300 _ _ |a 161-164
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1700576846_29049
|2 PUB:(DE-HGF)
520 _ _ |a For running advanced algorithms on a universal quantum computer, millions of qubits are required. To make use of quantum effects, state-of-the-art solid-state qubit devices have to be cooled to mK temperatures, which limits the systems’ scalability with room temperature (RT) electronics. We present the direct co-integration of a scalable, fully integrated, eight channel Bias-DAC designed in a 65-nm bulk CMOS technology and a Si/SiGe spin qubit device at the mixing chamber (MC) of a dilution refrigerator operating below 45 mK MC temperature. As a full proof of principle, the bias of a single electron transistor used as a sensing dot, as well as a single and double quantum dot bias of the qubit device is reported. The slow drift of the DAC S&H output circuit of 0.96 μV/s leads to a calculated prospective power consumption of 64.5 pW/ch for DC qubit bias voltages generated at low temperature.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Otten, René
|0 P:(DE-Juel1)174088
|b 1
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 2
700 1 _ |a Xue, Ran
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tu, Jhih-Sian
|0 P:(DE-Juel1)167206
|b 4
700 1 _ |a Seidler, Inga
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 6
700 1 _ |a Schreiber, Lars
|0 P:(DE-Juel1)172641
|b 7
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 8
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 9
773 _ _ |a 10.1109/ESSCIRC59616.2023.10268801
909 C O |o oai:juser.fz-juelich.de:1018304
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167206
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 1
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
920 1 _ |0 I:(DE-Juel1)HNF-20170116
|k HNF
|l Helmholtz - Nanofacility
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)HNF-20170116
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21