001018391 001__ 1018391
001018391 005__ 20240116084324.0
001018391 0247_ $$2doi$$a10.1103/PhysRevApplied.19.024057
001018391 0247_ $$2ISSN$$a2331-7019
001018391 0247_ $$2ISSN$$a2331-7043
001018391 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04772
001018391 0247_ $$2WOS$$aWOS:000936526000004
001018391 037__ $$aFZJ-2023-04772
001018391 041__ $$aEnglish
001018391 082__ $$a530
001018391 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author
001018391 245__ $$aParasitic-Free Gate: An Error-Protected Cross-Resonance Switch in Weakly Tunable Architectures
001018391 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2023
001018391 3367_ $$2DRIVER$$aarticle
001018391 3367_ $$2DataCite$$aOutput Types/Journal article
001018391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702449221_7741
001018391 3367_ $$2BibTeX$$aARTICLE
001018391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018391 3367_ $$00$$2EndNote$$aJournal Article
001018391 520__ $$aIn two-qubit gates activated by microwave pulses, by turning the pulse on or off, the state of qubits is swapped between entangled or idle modes. In either mode, the presence of stray couplings makes qubits accumulate coherent phase error. However, the error rates in the two modes differ because qubits carry different stray coupling strengths in each mode; therefore, eliminating stray coupling from one mode does not remove it from the other. We propose to combine such a gate with a tunable coupler and show that both idle and entangled qubits can become free from stray couplings. This significantly increases the operational switch fidelity in quantum algorithms. We further propose a weakly tunable qubit as an optimum coupler to bring the two modes parametrically near each other. This remarkably enhances the tuning process by reducing its leakage.
001018391 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001018391 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x1
001018391 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018391 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1
001018391 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.19.024057$$gVol. 19, no. 2, p. 024057$$n2$$p024057$$tPhysical review applied$$v19$$x2331-7019$$y2023
001018391 8564_ $$uhttps://juser.fz-juelich.de/record/1018391/files/PhysRevApplied.19.024057.pdf$$yOpenAccess
001018391 909CO $$ooai:juser.fz-juelich.de:1018391$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001018391 9141_ $$y2023
001018391 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001018391 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2023-08-25
001018391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001018391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001018391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001018391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001018391 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001018391 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001018391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
001018391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001018391 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001018391 920__ $$lyes
001018391 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001018391 980__ $$ajournal
001018391 980__ $$aVDB
001018391 980__ $$aUNRESTRICTED
001018391 980__ $$aI:(DE-Juel1)PGI-2-20110106
001018391 9801_ $$aFullTexts