001     1018391
005     20240116084324.0
024 7 _ |2 doi
|a 10.1103/PhysRevApplied.19.024057
024 7 _ |2 ISSN
|a 2331-7019
024 7 _ |2 ISSN
|a 2331-7043
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2023-04772
024 7 _ |a WOS:000936526000004
|2 WOS
037 _ _ |a FZJ-2023-04772
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)176178
|a Xu, Xuexin
|b 0
|e Corresponding author
245 _ _ |a Parasitic-Free Gate: An Error-Protected Cross-Resonance Switch in Weakly Tunable Architectures
260 _ _ |a College Park, Md. [u.a.]
|b American Physical Society
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1702449221_7741
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In two-qubit gates activated by microwave pulses, by turning the pulse on or off, the state of qubits is swapped between entangled or idle modes. In either mode, the presence of stray couplings makes qubits accumulate coherent phase error. However, the error rates in the two modes differ because qubits carry different stray coupling strengths in each mode; therefore, eliminating stray coupling from one mode does not remove it from the other. We propose to combine such a gate with a tunable coupler and show that both idle and entangled qubits can become free from stray couplings. This significantly increases the operational switch fidelity in quantum algorithms. We further propose a weakly tunable qubit as an optimum coupler to bring the two modes parametrically near each other. This remarkably enhances the tuning process by reducing its leakage.
536 _ _ |0 G:(DE-HGF)POF4-5221
|a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|c POF4-522
|f POF IV
|x 0
536 _ _ |0 G:(BMBF)13N15685
|a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|c 13N15685
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)171686
|a Ansari, Mohammad
|b 1
773 _ _ |0 PERI:(DE-600)2760310-6
|a 10.1103/PhysRevApplied.19.024057
|g Vol. 19, no. 2, p. 024057
|n 2
|p 024057
|t Physical review applied
|v 19
|x 2331-7019
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/1018391/files/PhysRevApplied.19.024057.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018391
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)176178
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171686
|a Forschungszentrum Jülich
|b 1
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-522
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5221
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Quantum Computing
|x 0
914 1 _ |y 2023
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21