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A B S T R A C T

This article proposes a new microscopic speed model for one-dimensional pedestrian movement.
Most existing modeling approaches consider only the distance and relative speed between a
pedestrian and the person in front resulting in totally asymmetric interaction models. However,
the distance with the pedestrian behind may also influence the behavior of a pedestrian.
Based on this assumption, we elaborate a new asymmetric microscopic model considering the
relative distances with the nearest neighbors behind and ahead using a fine-tuning asymmetry
parameter. We analyze the stability of the new model and calibrate the parameters using two
different single-file movement datasets. The numerical simulation results show that the new
model has fewer backward movements and pedestrian overlaps than the totally asymmetric
model making the stop-and-go waves in crowded situations more realistic. Furthermore, the
proposed fine-tuned model better describes the fundamental diagram and its scattering.

1. Introduction

Modeling pedestrian dynamics is essential to organizing safe and efficient crowded events. For instance, the models can be used
to develop simulation software and assist in decision-making, risk management, and policy development for large pedestrian events.
Various models have been developed to describe single-file pedestrian movements [1–7]. Generally speaking, pedestrian models are
mainly categorized as microscopic [7–14] and macroscopic [15–20] based on the motion characteristics investigated (see [21] for
review). Macroscopic models describe the aggregate characteristics of crowds, while microscopic models focus on the movement
of individual pedestrians. Furthermore, the models can be discrete, such as microscopic cellular automata and macroscopic lattice
models, or continuous, using systems of differential equations. The cellular automata models are random by nature, whereas in
continuous approaches stochasticity can be introduced through adding noise to the dynamics. All these models are subject to many
modeling assumptions that describe the way people move and interact with their environment. Several parameters and variables
have been introduced in microscopic models to describe pedestrian interaction behaviors in single-file motions. In most cases, the
models are totally asymmetric, i.e., the interaction model is only based on the distance to the nearest pedestrian in front and the
speed of that pedestrian.

In this paper, we propose a new microscopic stochastic model to describe pedestrians’ single-file movement. The originality of
the approach lies in the interaction model, which also depends on the distance to the pedestrian behind. The model is inspired by
previous statistical investigations [22] and empirical observations of coordination phenomena in single-file motion [23]. A parameter
fine-tuning the relative distance to the neighbors in front and behind is applied. To study the model’s behavior, we analyze the linear
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Fig. 1. Key methodological milestones in the process of defining and evaluating the proposed pedestrian speed model.

stability focusing on the role of the weight of the relative distances. We then calibrate the parameters of the deterministic speed
model using two single-file movement datasets and different methods: statistically by least squares and empirically by simulation.
Finally, we numerically investigate the movement of pedestrians in one-dimensional space and compare the simulation results with
the totally asymmetric model and the real data. The simulation analysis focuses on space–time trajectories and fundamental diagrams
(headway-speed relation). A summary of our methodology is presented in Fig. 1. The results show that the new model improves the
description of the fundamental diagram scattering and stop-and-go waves, making the simulation results more realistic.

The rest of the paper is structured as follows: we review and discuss the literature on pedestrian single-file movement models
in Section 2. In Section 3, the microscopic speed model considering the symmetric interaction is defined. Then, in Section 4, we
analyze the linear stability of the deterministic model to investigate theoretically the behavior of the proposed first-order speed
model. The calibration of the model’s parameters is presented in Section 5. In Section 6, the simulation results are presented and
discussed. Finally, in Section 7, we summarize the content of the paper.

2. Related work

To better understand pedestrian dynamics in complex movement systems, many researchers investigate and model pedestrian
behavior in one-dimensional space. Many single-file movement experiments (pedestrians walking in a single line or queue) have
been performed to observe and analyze the factors that influence pedestrians’ speeds, e.g., recent experiments performed in
Germany, Palestine, and Japan [24–26]. Further pedestrian trajectories from single-file experiments are available online.1 The
single-file experiments provide a basic analysis of pedestrian dynamics, focusing on the fundamental relationship between speed
and distance from neighbors. Various models based on the experiments have been developed in the literature to reproduce the
observed trajectories as closely as possible. The observation of the experiments inspired, for instance, Chraibi et al. [7] to introduce
the velocity-dependent volume exclusion of pedestrians into the force-based model. The authors observed from the experiments
that pedestrians’ speed is influenced by their shoulder rotation while avoiding others, leading them to conclude that using a
dynamic agent shape would be more effective than a static one. This results in the improvement of the simulation of pedestrians in
crowds. Another study by Cordes et al. [1] applies the concept of time-to-collision (TTC) to model single-file pedestrian movement.

1 Pedestrian dynamics data archive: https://ped.fz-juelich.de/da/doku.php
2
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The authors assume that the TTC quantifies the distance to a collision (between pedestrians) by combining spatial distances and
velocities. That aims to give rise to a new class of models that represent the interactions among pedestrians by evolving TTC.

Several pedestrian models were proposed, drawing inspiration from other models. For instance, using car-following models to
escribe the single-file movement, Lemercier et al. [4] elaborated a pedestrian interaction model. The model focuses on the following
ehavior of pedestrians walking in corridors or queues. The authors verified the Aw et al. [27] road traffic model in pedestrian
raffic and formulated a new model of interactions adapted to crowd simulation. Kuang et al. propose an extended optimal velocity
odel [5]. This model simulates the single-file movement in high density considering the interaction forces (repulsive and attractive

orces) between pedestrians. Other pedestrian single-file models are derived from two-dimensional force-based models, such as [3,6].
he issues of agent overlapping and oscillation in the social force model (as mentioned in [8,28–31]) can be linked, in a one-
imensional case, to the limitations of the optimal velocity car-following model. To prevent backward movements, oscillations, and
ollisions, the optimal velocity (OV) model requires fine-tuning of the parameters [32]. Such unrealistic simulations’ shortcomings
f single-file behavior can be addressed using extended models.

The distance behind is introduced in considerable traffic system models (vehicle models) [33–38]. For example, Ge et al. [37]
ropose an extended car-following model by introducing the backward-looking effect. The model considers several vehicles ahead
nd one behind in a single lane. The simulation of the space–time evolution of the car headways shows that the model suppressed
he traffic jam. Additionally, the findings of the linear stability analysis demonstrate that taking into account the backward-looking
ffect leads to the stabilization of the traffic system. Minghui Ma et al. [33] also propose an improved car-following model (cars
riven in a single-file setup) by considering the backward-looking behavior and motion information of multiple vehicles. The drivers
sually look behind while driving to avoid collisions with other vehicles. The simulation results show an efficient improvement in
he avoidance of traffic congestion and enhance the stability of the traffic flow in comparison to the models that include only the
istance in front. In pedestrian dynamics, Rio et al. [23] investigate the visual control of pedestrians following behavior. Using
xperimental investigations, the authors study how pedestrians adjust their walking speed when following a leader, based on the
isual information provided by the leader’s movements. The study involved experiments with pairs of participants walking in a
traight line, with one person leading and the other following. The results show that the follower’s walking speed is influenced by
he leader’s speed and visual cues, including the leader’s head movements and changes in the walking direction. Considering the
indings of Rio et al. we assume that there is coordination between the distances of pedestrians and their neighbors in the crowd,
hich influences the individual speeds of pedestrians.

In summary, existing pedestrian single-file movement models are systematically totally asymmetric and can encounter problems
ith overlapping and backward motion. Such difficulties are well-known for car-following models and can be overcome by extending

he interaction to the agent behind [33,39], leading to stability improvement and better collective coordination. Besides, collective
oordination is observed in pedestrian single-file movements [23]. Furthermore, recent statistical analysis using feed-forward neural
etworks devoid of modeling bias shows that the distance behind improves the speed prediction [22]. These statements motivate
s to extend a stochastic pedestrian single-file model by incorporating the distance to the pedestrian behind. Including the distance
ehind reduces unrealistic pedestrian overlaps and backward movements, which are observed in totally asymmetric models under
igh-density conditions. The model is a scaled-down version used to demonstrate specific aspects of the original system with fewer
nfluential factors and in a simplified way.

. Proposed model

We consider a single-file movement of pedestrians in continuous time on a uni-dimensional space of length 𝐿 with periodic
boundary conditions. The pedestrians initially ordered by their indexes 𝑛 = 1, 2,… , 𝑁 and assume that the follower and predecessor
of the 𝑛th pedestrian are the (𝑛 − 1)th and (𝑛 + 1)th pedestrians at any time, respectively. Due to the periodic boundary conditions,
the predecessor of the last pedestrian is the first agent and the follower of the first pedestrian is the last one as illustrated in Fig. 2.
The 𝑥-axis position of a pedestrian 𝑛 at time 𝑡 is denoted as 𝑥𝑛(𝑡). To calculate the distances between the consecutive pedestrians,
we subtract the positions as:

{

𝛥𝑥𝑛(𝑡) = 𝑥𝑛+1(𝑡) − 𝑥𝑛(𝑡), 𝑛 = 1,… , 𝑁 − 1,
𝛥𝑥𝑁 (𝑡) = 𝐿 + 𝑥1(𝑡) − 𝑥𝑁 (𝑡).

(1)

In the proposed pedestrian single-file model, we assume that pedestrians can feel how close (the distance) the person behind is,
which affects how they behave and extends the interaction. For the 𝑛th pedestrian, the model is given by the following stochastic
differential equation:

{

𝑑𝑥𝑛(𝑡) = 𝐹
(

𝛥𝑥𝑛(𝑡) + 𝛼(𝛥𝑥𝑛(𝑡) − 𝛥𝑥𝑛−1(𝑡))
)

𝑑𝑡 + 𝜉𝑛(𝑡)𝑑𝑡,
𝑑𝜉𝑛(𝑡) = −𝛾𝜉𝑛(𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑛(𝑡).

(2)

Here the speed of a pedestrian is an OV function 𝐹 coupled to a stochastic noise provided by the Ornstein–Uhlenbeck process
with rate 𝛾 > 0 and volatility 𝜎 ∈ R, and 𝑊𝑛(𝑡) being a Wiener process. The Ornstein–Uhlenbeck process is used to enhance the
smoothness of noise evolution and make the noise more realistic than white noise in speed-based models (see [2] for a more detailed
description). The OV function is assumed positive, increasing, and bounded by the maximal desired speed.

In contrast to the totally asymmetric model [2], the OV function depends on a weighted average between the distance to the
predecessor 𝛥𝑥𝑛(𝑡) and the distance to the follower 𝛥𝑥𝑛−1(𝑡), adjusted by a dimensionless, fine-tuning asymmetry parameter 𝛼 ∈ R.
3

The totally asymmetric model is restored if 𝛼 = 0. Conversely, the speed function only depends on the distance to the follower if
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Fig. 2. Scheme of the system with periodic boundary conditions. 𝛥𝑥𝑛(𝑡) is the distance of the pedestrian 𝑛 to the predecessor at time 𝑡, while 𝛥𝑥𝑛−1(𝑡) is the
istance to the follower.

= −1, whereas it is symmetric and depends on the arithmetic mean of the distances to the follower and the predecessor if 𝛼 = −1∕2.
ntuitively, the cases 𝛼 > 0 lead to homogenization dynamics, as a large distance ahead and a small distance behind results in a
igher speed, while a small distance ahead and a large distance behind results in a lower speed and inversely.

The OV function 𝐹 ∶ R ↦ R+ includes classical parameters related to the pedestrian characteristics and behaviors, such as the
esired speed 𝑣0 > 0, the desired time gap 𝑇 > 0, and the pedestrian size (circle width) 𝓁 > 0. A typical OV function is the following
ounded linear function:

𝐹 (𝑥) = min
{

𝑣0,
𝑥𝑛(𝑡) − 𝓁

𝑇

}

(3)

that we approximate using the smoothed Log-Sum-Exp function [40] given by:

𝐹𝜀(𝑥) = −𝜀 log
(

exp
(

−
𝑣0
𝜀

)

+ exp
(

−
𝑥𝑛(𝑡) − 𝓁

𝑇 𝜀

))

, as 𝜀 → 0. (4)

In the following, we set the speed smoothing 𝜀 to 0.01 m/s.

4. Linear stability analysis

We first examine the linear stability of the deterministic first-order model (Eq. (2)) to determine possible values of parameters.
Applying stability analysis allows us to investigate the behavior of the proposed first-order deterministic model (Eq. (2)). Therefore,
we need to determine the behavior of a solution to the differential equation as follows.

In general, suppose a linear differential equation given by the form:

𝑓 ′(𝑡) = 𝑎𝑓 (𝑡), where 𝑡 ∈ [0,∞) and 𝑎 ∈ R (5)

The general solution of Eq. (5) above is:

𝑓 (𝑡) = 𝑏𝑒𝑎𝑡, (6)

with 𝑏 = 𝑓 (0). Indeed, we have in this case:

𝑓 ′(𝑡) = 𝑎𝑏𝑒𝑎𝑡 = 𝑎𝑓 (𝑡). (7)

o, 𝑓 ′(𝑡) depends on the value of the constant 𝑎. It converges if and only if the value of 𝑎 is non-positive, i.e.,

𝑎 < 0, (8)

therwise the system will collapse.
Focusing on the interactive part of the model, the single-file dynamics for the 𝑛th pedestrian is given by:

𝑥̇𝑛(𝑡) =
1
𝑇
(𝛥𝑥𝑛(𝑡) + 𝛼(𝛥𝑥𝑛(𝑡) − 𝛥𝑥𝑛−1(𝑡)))

= 1 ((1 + 𝛼)𝛥𝑥 (𝑡) − 𝛼𝛥𝑥 (𝑡)).
(9)
4

𝑇 𝑛 𝑛−1
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Table 1
Table summarizing CroMa and BaSiGo datasets used for parameter calibration and model validation.

Experiment Location, date Geometry length
[m]

Number of
participants

Frame-rate
[fps]

Investigation Pedestrian
identification
across runs

CroMa Düsseldorf,
Germany (2021)

14.97 𝑁 = 8, 16, 20,
24, 32, 36, 40

25 Gender factor
(mixed)

✓

BaSiGo Düsseldorf,
Germany (2013)

26.84 𝑁 = 15, 30, 47,
52, 55, 59

16 Congested
dynamic

By substituting 𝛥𝑥𝑛(𝑡) = 𝑥𝑛+1(𝑡) − 𝑥𝑛(𝑡) and 𝛥𝑥𝑛−1(𝑡) = 𝑥𝑛(𝑡) − 𝑥𝑛−1(𝑡) into Eq. (9) we obtain:

𝑥̇𝑛(𝑡) =
1
𝑇
((1 + 𝛼)𝑥𝑛+1 − (1 + 2𝛼)𝑥𝑛 + 𝛼𝑥𝑛−1)

= 1
𝑇
(1 + 𝛼)𝑥𝑛+1 −

1
𝑇
(1 + 2𝛼)𝑥𝑛 +

1
𝑇
𝛼𝑥𝑛−1

= − 1
𝑇
(1 + 2𝛼)𝑥𝑛 +

1
𝑇
((1 + 𝛼)𝑥𝑛+1 + 𝛼𝑥𝑛−1)

= 𝑎𝑥𝑛 + 𝐶(𝑥𝑛+1, 𝑥𝑛−1) 𝑑𝑡

(10)

with:

𝑎 = − 1
𝑇
(1 + 2𝛼), (11)

and:

𝐶(𝑥𝑛+1, 𝑥𝑛−1) =
1
𝑇
((1 + 𝛼)𝑥𝑛+1 + 𝛼𝑥𝑛−1). (12)

Then the system will be stable if the stability condition 𝑎 < 0 is satisfied (see condition (8)), which is given by

− 1
𝑇
(1 + 2𝛼) < 0,

hich is equivalent to:

𝛼 > −1∕2, (13)

as 𝑇 > 0.
Interestingly, the critical value is:

𝛼𝐶 = −1∕2 (14)

corresponds to a symmetric case where the distance in the OV function is the arithmetic mean of the distances to the nearest
neighbors in front and behind. Setting 𝛼 > −1∕2 makes the weight for the distance ahead higher than the weight for the distance
behind. Therefore, the following model is only stable if the interaction model is asymmetric, giving more importance to the distance
to the neighbor in front.

5. Parameters calibration

5.1. Single-file movement datasets and data preparation

Two different experimental datasets are used to statistically estimate the parameters of the model and for comparison with
the simulation results. The first data sample is the one-dimensional dataset of Paetzke et al. [24]. Several experiments were
conducted in Düsseldorf, Germany in 2021 to study the influence of gender on pedestrian movement. The pedestrians were
instructed to move in an oval corridor one after the other without haste and overtaking (see Fig. 3). We select the mixed alternating
experiment for the parameters’ calibration. The data includes different experimental runs with a pedestrian number varying between
𝑁 = 8, 16, 20, 24, 32, 36, 40. That ensures obtaining different ranges of variation of distances between pedestrians, and speeds. The
data of each pedestrian in the different experimental runs are collected and labeled with pedestrian ID (unique number). This data
will be used to estimate individually the model’s parameters (see Section 5.2). For more details on the experiment, refer to the
article [24].

The second experiment dataset used for parameter calibration and validation of the numerical simulation is the single-file
movement dataset by Ziemer et al. [41]. The experiment (see Fig. 4), conducted in Germany within the project BaSiGo, focuses
on the analysis of pedestrians’ dynamic moving in an oval system with periodic boundary conditions. We use in the following the
data of the experiments with 𝑁 = 15, 30, 47, 52, 55, 59 participants. Evaluating the model with two different datasets will ensure that
the model is reliable and generalizes well to new data. Table 1 summarizes the main information about the experiments.
5
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Fig. 3. Overhead view of the CroMa single-file movement experiment run 𝑁 = 20.

Fig. 4. Overhead view of the BaSiGo single-file movement experiment run 𝑁 = 59.

The trajectory data from the experiments is used to calculate the pedestrian positions 𝑥𝑛(𝑡), the speed 𝑣𝑛(𝑡), and the distance in
the front 𝛥𝑥𝑛(𝑡) and behind 𝛥𝑥𝑛−1(𝑡). Here is the equation of the pedestrian’s speed:

𝑣𝑛(𝑡) =
𝑥𝑛(𝑡 + 𝛥𝑡∕2) − 𝑥𝑛(𝑡 − 𝛥𝑡∕2)

𝛥𝑡
, (15)

where 𝛥𝑡 short time interval around 𝑡 (10 frames, i.e., 0.4 s).

5.2. Nonlinear least squares estimates of the parameters

The calibration of the proposed model (2) is necessary for making quantitative predictions. To achieve this, we need to adjust
the models’ parameters to fit the different samples of experimental data. We use the nonlinear least squares method to estimate the
parameters 𝑝 = (𝑣0, 𝑇 ,𝓁, 𝛼) related to the deterministic part of the model (see (2) and (4)). The non-linear speed model reads as
follows:

𝑀𝑝(𝛥𝑥𝑛, 𝛥𝑥𝑛−1) = 𝐹𝑣0 ,𝑇 ,𝓁
(

𝛥𝑥𝑛 + 𝛼(𝛥𝑥𝑛 − 𝛥𝑥𝑛−1)
)

, (16)

with 𝐹 the smoothed optimal velocity function given in (4). The regression is nonlinear since the OV function is sigmoidal.
Then, using an experimental sample of 𝐾 observations of individual speed and distances in front and behind (𝑠𝑘, 𝛥𝑥𝑘, 𝛥𝑥0𝑘) where
𝑘 = 1,… , 𝐾, we estimate the parameters 𝑝 by minimizing the difference to the square between the observed speeds and the model
6
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Fig. 5. Global estimates of the model’s parameters (without noise) using nonlinear least squares. The scatter plots of the fundamental diagram for the BaSiGo
experimental dataset and the predictions of the totally asymmetric model (left panel) and the asymmetric model (right panel) are presented. The parameters’
estimates (𝑇 ,𝓁, 𝑣0) of the optimal velocity are close to each other for both models. The asymmetric model reproduces the variability of the fundamental diagram
and improves the prediction. Note that only 16% of the data samples are shown in the scatter plots to improve the readability of the figure.

predictions:

𝑝̃ = argmin
𝑝

𝐾
∑

𝑘=1

(

𝑠𝑘 −𝑀𝑝(𝛥𝑥𝑘, 𝛥𝑥0𝑘)
)2. (17)

The model residuals are the variables:

𝑅𝑘(𝑝̃) = 𝑠𝑘 −𝑀𝑝̃(𝛥𝑥𝑘, 𝛥𝑥0𝑘) (18)

The least squares estimates minimize the sum of squared residuals. In the following sections, we begin by presenting the global
parameter estimates over the full data samples, followed by individual estimates calculated for each pedestrian. Subsequently, we
delve into a detailed discussion of the estimates for 𝛼.

5.2.1. Global parameter estimates
Fig. 5 illustrates the global parameter estimations over the full samples for the totally asymmetric model (with initialized 𝛼 = 0)

and the proposed asymmetric model (with estimated 𝛼) without noise (presenting the deterministic part of the model). Note that for
the initial model with 𝛼 = 0, the speed solely depends on the distance in front. The optimal velocity function appears directly (see
Eq. (3) and Fig. 5, left panel). On the other hand, the extended speed model depends on the distances in front and behind, allowing to
reproduction of a certain variability even in the deterministic framework (see Fig. 5, right panel). The results show that the estimates
of the parameters (𝑇 ,𝓁, 𝑣0) for the optimal velocity function are equivalent to the totally asymmetric and asymmetric models. The
estimates for 𝑇 are 1.04 s and 0.98 s, and for 𝓁 are 0.32 m and 0.34 m for totally asymmetric and asymmetric models, respectively.
While, the desired velocity, 𝑣0, is 1.19 m∕s for both models. Therefore, the model extension with the fine-tuning parameter 𝛼 does
not affect the shape of the fundamental (distance-speed) relationship. We note that the estimated value of 𝛼 = −0.46 is negative and
close to the critical stability condition (𝛼𝐶 = −1∕2).

Furthermore, we observe that the asymmetric model with an estimated 𝛼 has the highest 𝑅2 value (𝑅2 = 0.93) compared to the
totally asymmetric model (𝑅2 = 0.86). Indeed, it also recovers part of the variability of the distance-speed relationship. The proposed
model captures the variability of the data points better than the totally asymmetric model. However, this is not surprising as the
asymmetric model has one more parameter.

The distributions of the residuals of both models are compact as shown in Fig. 6. This means that the least squares estimates are
close to the maximum likelihood estimates. The distribution for the asymmetric model is slightly more concentrated with a lower
standard deviation. The standard deviation of the residual is approximately 0.15 m∕s for the totally asymmetric model while it is
0.11 m∕s for the new asymmetric model. A Fisher test for equality of the variance allows rejecting the equality hypothesis without
any doubt (𝑝-value smaller than 2.2e−16). Furthermore, assuming that the residuals are normally distributed, the Akaike information
criterion:

AIC = 2𝑘 − 2 log(̃)

with 𝑘 the number of parameters (3 and 4 for the totally asymmetric and asymmetric models, respectively) and ̃ the maximum
likelihood, is much smaller for the asymmetric model (AIC = −9632.5) than for the initial totally asymmetric model (AIC = −5732).
This confirms the enhancements of the new model even by taking into account that it includes one more parameter. Therefore, the
improvements gained with the new parameter of the asymmetric model are statistically significant.

Finally, note that our observations are extracted from the trajectories and are time-dependent. The generalized least squares
estimates, taking into account the (linear) time dependence, are close to the ordinary least squares estimates.
7
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Fig. 6. Histograms of the residuals for the totally asymmetric model (left panel) and the asymmetric model (right panel). The distribution for the asymmetric
model is slightly more concentrated.

Fig. 7. Global (left panel) and individual (right panel) least squares estimates of the parameters using the CroMa dataset. The values for individual estimates
are the averages for all the pedestrians. The parameter estimates are relatively stable. Note that only 16% of the observations and predictions are presented to
improve the readability.

5.2.2. Individual parameter estimates
The CroMa experimental sample offers the possibility to identify the pedestrians in each experimental run. This allows the model

parameters to be estimated individually for each pedestrian across all density levels. The estimates for the parameters (𝑇 ,𝓁, 𝑣0) of
the optimal velocity function are close to those obtained using the BaSiGo dataset (see Fig. 7). The legend in the right panel gives
the mean values over all estimates of pedestrians’ individual parameters.

The histograms of the individual parameter estimates are depicted in Fig. 8. The variation ranges for parameter estimates of the
optimal velocity function are reasonable. For the desired time gap 𝑇̃ the values range from 0.6 to 1.6 s. While for the pedestrian size
𝓁 the value ranges from 0.2 to 0.5 m, and for the desired speed 𝑣̃0 from 0.9 to 1.6 m/s. Drawing attention to intriguing findings,
that the individual estimates for the parameter 𝛼 are systematically non-positive and may even be smaller than the critical stability
threshold 𝛼𝐶 = −1∕2.

A summary of the different estimates for the parameters of the totally asymmetric and asymmetric models is given in Table 2.
It is noteworthy that the estimates are very similar for the different datasets (BaSiGo and CroMa) and estimation methods (global
and individual). The parameters’ values of the optimal velocity function for both the totally asymmetric and asymmetric models are
approximately similar. These results confirm the accuracy of the estimates obtained and the characteristic behavior of single-file
pedestrian motion.

5.2.3. Remarks on estimation of 𝛼
The estimates for the asymmetry parameter 𝛼 are systematically negative and close to the critical stability value 𝛼𝐶 = −1∕2

(see (13)). However, simulation results show that positive values for 𝛼, typically 𝛼 = 1, provide more realistic dynamics, especially
regarding pedestrian overlap and backward movement when stop-and-go waves arise.
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Fig. 8. Histograms of the parameter estimates by individual nonlinear least squares using the CroMa dataset.

Table 2
Table summarizing the statistical estimates of the models’ parameters for global/individual estimates,
totally asymmetric, and proposed models. The values for the individual estimates have the form 𝑋±𝑌 with
𝑋 the mean value and 𝑌 the empirical standard deviation over all the individual pedestrian estimates.
The parameter estimates are close to each other whatever the sample and method used. The AIC is
calculated over an identical sample size of 6000 observations.

Global estimates Individual estimates

BaSiGo dataset CroMa dataset

Totally asym. model (𝛼 = 0) Asymmetric model (estimated 𝛼)

𝑇̃ [s] 1.04 0.98 1.01 0.97 ± 0.18

𝓁 [m] 0.32 0.34 0.33 0.35 ± 0.06

𝑣̃0 [m/s] 1.19 1.19 1.14 1.16 ± 0.13

𝛼̃ – −0.46 −0.44 −0.39 ± 0.14

𝑅2 0.86 0.93 0.88 0.92

AIC −5732 −9632.5 −6123.4 −8722.7

In fact, the low estimates for 𝛼 mainly result from simple kinematic effects to single file motion, regardless of the dynamical
model. Assuming that the OV function 𝐹 ∶ 𝑠 ↦ 𝐹 (𝑠) = 𝑠∕𝑇 is linear, the cost function in the least squares estimates reads for the
parameter 𝛼:

𝑓 (𝛼) =
𝐾
∑

𝑘=1

(

𝑣𝑘 −
1
𝑇̃
(

𝛥𝑥𝑘 + 𝛼(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)
)

)2
(19)

and the derivative is given by:

𝑓 ′(𝛼) = −2
̃

𝐾
∑

(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)
(

𝑣𝑘 −
1
̃
(

𝛥𝑥𝑘 + 𝛼(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)
)

)

. (20)
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The function 𝑓 being convex, it is minimal if:

𝑓 ′(𝛼̃) = 0 ⇔ 𝛼̃ =
∑𝐾

𝑘=1(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)(𝑣𝑘𝑇̃ − 𝛥𝑥𝑘)
∑𝐾

𝑘=1(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)
2

. (21)

The probabilistic distribution of the distances ahead and behind can reasonably be assumed to be identical. Assuming further
that these distances and the speed are statistically independent, i.e., that there is no relationship between speed and distances,
we asymptotically obtain:

𝛼̃ → −1∕2 as 𝐾 → ∞, (22)

since:
∑𝐾

𝑘=1(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)𝑣𝑘𝑇̃
∑𝐾

𝑘=1(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)
2

→ 0, (23)

while:

−
∑𝐾

𝑘=1(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)𝛥𝑥𝑘
∑𝐾

𝑘=1(𝛥𝑥𝑘 − 𝛥𝑥0𝑘)
2

=
−
∑𝐾

𝑘=1 𝛥𝑥
2
𝑘 − 𝛥𝑥𝑘𝛥𝑥0𝑘

∑𝐾
𝑘=1 𝛥𝑥

2
𝑘 + (𝛥𝑥0𝑘)

2 − 2𝛥𝑥𝑘𝛥𝑥0𝑘
→ −1∕2, (24)

as 𝐾 → ∞. The kinematic relationships of the single-file motion dominate and bring the statistical estimate for 𝛼 close to the critical
tability condition for which the model is symmetric. The fine-tuning effects of the asymmetric mechanisms weighted by 𝛼 occur at a
ower level, through the interdependence between the distances and the speed. Therefore, the statistical estimate of the asymmetry
arameter 𝛼 is strongly influenced by the kinematic relationship of the single-file movement. This can lead to misleading calibration
alues for this parameter. In the following simulation analysis, we manually calibrate 𝛼 and observe that positive values, e.g., 𝛼 = 1,
ive more realistic dynamics.

. Simulation results

.1. Simulation setup

We numerically simulate the asymmetric single-file pedestrian model using an Euler–Maruyama scheme. The numerical solver
eads:

{

𝑥𝑛(𝑡 + 𝛿𝑡) = 𝑥𝑛(𝑡) + 𝛿𝑡𝐹
(

𝛥𝑥𝑛(𝑡) + 𝛼(𝛥𝑥𝑛(𝑡) − 𝛥𝑥𝑛−1(𝑡))
)

+ 𝛿𝑡𝜉𝑛(𝑡),
𝜉𝑛(𝑡 + 𝑑𝑡) = 𝜉𝑛(𝑡)(1 − 𝛿𝑡𝛾) +

√

𝛿𝑡𝜎𝑍𝑛(𝑡),
(25)

with the time step 𝛿𝑡 = 0.01 s and independent normal random variables (𝑍𝑛(𝑡), 𝑡 = 𝑚𝛿𝑡, 𝑚 ∈ {0, 1, 2,…})𝑛. Here 𝐹 is the smoothed
V function given in Eq. (4) with 𝑣0 = 1.19 m∕s, 𝑇 = 0.98 s and 𝓁 = 0.34 m. The speed smoothing is equal to 𝜀 = 0.01 m∕s. For the

noise parameters, we use the same estimates as [2] in the simulation, namely 𝜎 = 0.09 ms−3∕2 and 𝛾 = 0.23 s−1. The values for 𝛼 will
be set manually, ranging from −0.25 to 2. The size of the geometry and number of pedestrians are set as in the BaSiGo and CroMa
experiences. The initial condition is uniform with speeds zero.

6.2. Assessing the asymmetry parameter by simulation

We assess the asymmetry parameter 𝛼 by estimating the parameters using synthetic datasets obtained by simulation. The aim is
to evaluate how strong the influence of the kinematic single-file relationships on the least squares estimates for 𝛼. The scatter plots
of real and synthetic data with corresponding least squares parameter estimates are shown in Fig. 9 and Table 3.

We can clearly observe in the figure that decreasing 𝛼 increases the scattering of the data points. The simulation with 𝛼̃ = −0.46
as statistically estimated, shows an unrealistically larger scatter.

As expected, the least squares estimates for the asymmetry parameter 𝛼 remain constant, close to the critical stability condition
𝛼𝐶 = −1∕2. This holds even when 𝛼 >> 0 in the model, confirming the predominance of the kinematic single-file relationships in
he dynamics and the limited significance of the statistical estimates. The estimates of the parameter (𝑇 ,𝓁, 𝑣0) of the OV function

(4) are also stable. Only the estimates for the desired speed 𝑣0 slightly decrease as 𝛼 increases due to the nonlinear shape of the OV
function.

6.3. Main simulation results

In this section, we compare the real data of the BaSiGo experiment with the simulation results of the totally asymmetric model and
the new asymmetric model. The parameters of the deterministic speed models are set as follows: the desired speed is 𝑣0 = 1.19 m∕s,
the desired time gap is 𝑇 = 0.98 s, the pedestrian size is 𝓁 = 0.34 m, while the noise parameters are equal to 𝜎 = 0.09 ms−3∕2 and
𝛾 = 0.23 s−1. The dimensionless asymmetry parameter 𝛼 is set to zero for the totally asymmetric model whereas it is equal to one
for the new asymmetric model. Several simulation runs are carried out with different numbers of pedestrians 𝑁 = 15, 30, 47, 52,
55, and 59 as in the BaSiGo experiment.
10



Physica A: Statistical Mechanics and its Applications 633 (2024) 129394R. Subaih and A. Tordeux
Fig. 9. Least squares parameter estimates and pedestrian distance-speed scatter plots for the BaSiGo experiment (gray dots), the model prediction (upper left
plot), and simulation results for 𝛼 between −0.25 and 2 (remaining plots). The estimates for the asymmetry parameter 𝛼 remain constant, close to the critical
stability condition 𝛼𝐶 = −1∕2, even for the synthetic data when 𝛼 >> 0. Note that only 16% of data points are presented.

6.3.1. Fundamental diagram
We compare the fundamental relationship between the distance ahead and the speed, as well as the distributions of the speed and

distance individually (see Fig. 10). It is noteworthy that the asymmetric model better shapes the data point scatter of the fundamental
diagram compared to the totally asymmetric model (see Fig. 10, upper panels). In both real and synthetic data obtained with the
asymmetric model, three main clusters can be observed. These clusters are also present in the totally asymmetric model, but they
are less pronounced.

The marginal distributions of the speed and distance confirm the improvements obtained with the asymmetric interaction model.
Regarding the speed distribution, both the real data and simulation results from the new model exhibit close similarities, with three
modes of identical amplitude. Conversely, the shape of the three modes is less pronounced in the totally asymmetric model (see
Fig. 10, middle panels). As for the distance distributions, they appear relatively compact and similar for the real data and the
asymmetric model, with distances less than 3 and 4 m, respectively. In contrast, the totally asymmetric model distance distributions
have an unrealistically large tail with distances up to 8 meters (see Fig. 10, bottom panels). Furthermore, both the real data and
11
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Table 3
Table summarizing the estimates of the model’s parameters by nonlinear least squares using the BaSiGo data set and
synthetic data obtained by simulation with 𝛼 ranging between −0.25 and 2. The symbols 𝑇̃ , 𝓁, 𝑣̃0, and 𝛼̃ are the parameter
values estimated by least squares. Note that although the setting for 𝛼 ranges from −0.25 to 2 in the simulations, the
estimates remain stable around −0.5 due to kinematic single-file effects.

BaSiGo Synthetic data

𝛼 = −0.25 𝛼 = 0 𝛼 = 0.25 𝛼 = 1 𝛼 = 2

𝑇̃ [s] 0.98 1.06 1.06 1.04 1.05 1.04

𝓁 [m] 0.34 0.31 0.32 0.32 0.32 0.32

𝑣̃0 [m/s] 1.19 1.14 1.13 1.11 1.07 1.08

𝛼̃ −0.46 −0.45 −0.49 −0.5 −0.5 −0.49

𝑅2 0.92 0.92 0.94 0.95 0.96 0.97

Fig. 10. Distance-speed scatterplot (upper panels), speed histogram (middle panels) and spacing ahead histogram (bottom panels) of BaSiGo experimental data
(left panel) and the simulation results of totally asymmetric (𝛼 = 0, central panels) and asymmetric (𝛼 = 1, right panels) models for runs 𝑁 = 15, 30, 47, 52, 55, 59.
Note that only 16% of the data samples were used in the scatter plots. The red dashed line is located on zero to indicate the negative values of the speed and
distance ahead.

the simulation results from the asymmetric model show a minimal occurrence of negative values for speed and distance compared
to the totally asymmetric model (see the left tail of the distributions in Fig. 10, middle and lower panels).

6.3.2. Space–time diagram
In this section, we compare the real (BaSiGo experiment) and synthetic single-file trajectories obtained from the totally

asymmetric and asymmetric models with 59 participants (see Fig. 11).
12



Physica A: Statistical Mechanics and its Applications 633 (2024) 129394R. Subaih and A. Tordeux
Fig. 11. Trajectories of 𝑁 = 59 pedestrian walking on a ring of length 27 m observed over a segment of length 2 m. From left to right: real data (BaSiGo
experiment), totally asymmetric model (𝛼 = 0), and asymmetric model (𝛼 = 1), respectively.

It is observed that the totally asymmetric model shows more backward movement with negative speed and overlap compared
to the real data. This aligns with the previously mentioned findings regarding the left tail of the speed and distance distributions,
which spread out in the totally asymmetric model (refer to Fig. 10, middle and bottom panels). The simulations for the asymmetric
model with 𝛼 = 1 show fewer backward movements, making the stop-and-go waves qualitatively more realistic. This improvement
is obvious in the crowded experiment with 59 participants.

Another enhancement introduced by our proposed model is to make the noise parameters constant. In previous work [2], the
noise parameters (𝜎 and 𝛾) are state-dependent, meaning that multiple values for the noise parameters (𝜎 or 𝛾) are estimated
depending on the distance class (refer to Fig. 7 in the paper [2]). By introducing the distance to the follower, we simplify the
calibration process for the noise parameters, making the calculations much easier.

7. Conclusions

We present an original asymmetric stochastic model describing the movement of pedestrians in one-dimensional space (single-
file motion). Taking inspiration from statistical analysis [22] and observation of coordination in pedestrian single-file motion [23],
we include the distance to the follower in the OV model, resulting in an asymmetric interaction model including a fine-tuning
asymmetry parameter 𝛼. Statistical estimates of the model using experimental data enable parameter calibration and interpretation.
They also demonstrate that the enhancement brought by the new parameter is statistically significant. The comparison of the
experimental data and synthetic data of the improved model under different settings of 𝛼, specifically 𝛼 = 0 and 𝛼 = 1, shows
a strong agreement between the asymmetric model results and the experimental data. The simulations performed with positive 𝛼
exhibit reduced backward movements, resulting in stop-and-go waves that closely resemble the experimental data. Additionally,
the model describes a realistic fundamental diagram and, in particular, its scattering. Further evaluation in terms of validation
and verification to assess the model’s overall performance will be undertaken in future work. The proposed model should also be
benchmarked against various models found in the literature.
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