001018415 001__ 1018415
001018415 005__ 20240625085712.0
001018415 0247_ $$2doi$$a10.24435/materialscloud:dk-wq
001018415 037__ $$aFZJ-2023-04796
001018415 041__ $$aEnglish
001018415 1001_ $$0P:(DE-Juel1)179506$$aHilgers, Robin$$b0$$eCorresponding author$$ufzj
001018415 245__ $$aRelaxed thin film structures of one, two, and three magnetic 3d transition metal layers on FCC noble-metal substrates based on FLAPW PBE calculations
001018415 260__ $$bMaterials Cloud Archive$$c2023
001018415 3367_ $$2BibTeX$$aMISC
001018415 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1700746972_4449
001018415 3367_ $$026$$2EndNote$$aChart or Table
001018415 3367_ $$2DataCite$$aDataset
001018415 3367_ $$2ORCID$$aDATA_SET
001018415 3367_ $$2DINI$$aResearchData
001018415 500__ $$aMIT License
001018415 520__ $$aThe uploaded data set contains setups of all 6660 possible combinations of up to three atomic layers of 3d transition metals on six different FCC noble-metal substrates. The substrates are modelled by five layers of Ag, Au, Pd, Pt, Rh or Ir in the (001) orientation. Nearly all structures (6282) have been relaxed, i.e. their ground state atomic configuration has been determined by density functional theory calculations. This has been achieved using a workflow implemented in the AiiDA-FLEUR package that first determines the substrate lattice constant and then relaxes the interlayer distances of the ad-layers using the forces calculated. All simulations have been performed using the FLAPW code FLEUR with the standard GGA-PBE exchange-correlation functional. A significant portion of these 3d thin films exhibits magnetic properties and thus could have applications in emerging technological fields such as e.g. spintronics. Therefore, the database also includes the magnetic properties of the relaxed films. However, no systematic investigation of possible magnetic configuration was performed and hence not in all cases the magnetic ground state might be included.
001018415 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001018415 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
001018415 588__ $$aDataset connected to DataCite
001018415 650_7 $$2Other$$a2D materials
001018415 650_7 $$2Other$$aMagnetic Materials
001018415 650_7 $$2Other$$a3d Transition Metals
001018415 650_7 $$2Other$$aNoble-Metal Substrates
001018415 650_7 $$2Other$$aFLAPW
001018415 650_7 $$2Other$$aPBE
001018415 650_7 $$2Other$$aThin Films
001018415 650_7 $$2Other$$aStructural Relaxation
001018415 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001018415 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
001018415 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001018415 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b1$$ufzj
001018415 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj
001018415 773__ $$a10.24435/materialscloud:dk-wq
001018415 8564_ $$uhttps://archive.materialscloud.org/record/2023.180
001018415 909CO $$ooai:juser.fz-juelich.de:1018415$$pVDB
001018415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179506$$aForschungszentrum Jülich$$b0$$kFZJ
001018415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b1$$kFZJ
001018415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001018415 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001018415 9141_ $$y2023
001018415 920__ $$lyes
001018415 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001018415 980__ $$adataset
001018415 980__ $$aVDB
001018415 980__ $$aI:(DE-Juel1)IAS-1-20090406
001018415 980__ $$aUNRESTRICTED
001018415 981__ $$aI:(DE-Juel1)PGI-1-20110106