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A B S T R A C T   

We calculate the energy demand of automated vehicles for different driving cycles. We alter standard driving 
cycles to depict the driving behavior of automated vehicles. We further assume additional energy demand for 
automation systems and investigate trade-offs between reductions in mechanical energy demand and increases in 
auxiliary energy demand. In the case of trucks, we find that smoother driving and the additional energy demand 
offset one another for highway driving. However, a notable reduction in energy demand can be achieved by 
lowering the maximum driving speed. For cars, we find that the additional energy demand slightly outweighs the 
effects of smoother driving on highways. When considering city driving, the additional energy demand increases 
the energy demand of a mid-size car in the standard driving cycle by one third. Reducing driving speeds and 
stops is not able to offset this increase in energy demand.   

1. Introduction 

The transportation sector was responsible for about 22 % of green
house gas (GHG) emissions in Europe in the year 2020 (EEA, 2022). 
Furthermore, it is difficult to make GHG neutral with an increase of 
nearly 3 % in GHG emissions in 2020 compared to 1990, whereas total 
emissions from all sectors decreased by about 34 % in the EU (EEA, 
2022). With different forecasts anticipating an increase in transport 
demand over the next few decades, the contribution of transportation to 
overall GHG emissions will further grow. In one study, a 22 % increase in 
transport demand from 2019 to 2049 in the US is expected, with the 
largest portions deriving from freight transport (combination truck 
mileage, growing by 57 %, and single-unit truck mileage, growing by 
101 %) (FHWA, 2022). In another study, a 9.9 % increase in motorized 
individual traffic for passenger transport from 2010 to 2030 and an 18.9 
% increase in road freight transport is expected for Germany (Schubert 
et al., 2014). Traffic forecasts for the UK, meanwhile, anticipate an in
crease of 17 % to 51 % from 2015 to 2050 (UK DfT, 2018). These in
creases will lead to an even stronger imperative for decarbonization. 
This might be achieved using alternative drivetrains like battery– or fuel 
cell–electric solutions. Another important aspect to consider is future 
technologies such as automated driving. Automated driving might, on 
the one hand, change (increase) overall transport demand and, on the 
other, lead to different driving styles. Driver assistance systems like 

adaptive cruise control (ACC) nowadays already keep vehicle speeds 
smooth and reduce acceleration and deceleration. Connectivity between 
vehicles and with infrastructure might also further increase the fore
sightedness of the vehicles and therefore make traffic flows even 
smoother. The effects of these measures must be investigated in order to 
see which might provide the best opportunities for fuel saving. However, 
deploying the technology is costly and must therefore be optimized 
(Moubayed et al., 2020). It remains to be seen whether the benefits of 
the technology justify its costs. As neither automated vehicles nor 
vehicle-to-infrastructure communication are widely available yet, cur
rent studies must rely on simulations to estimate the impact of these 
technologies. 

In this paper, we will consider the role of automated driving to 
change the driving cycles of vehicles. The changes we identify range 
from foresighted, smoother driving and reduced driving speeds for 
trucks on highways, to city driving without stops at traffic lights and 
reduced speeds for cars. We will investigate the changes in fuel demand 
of automated vehicles under the adjustments we make to the driving 
cycles. In our analysis, we will also consider mechanical energy demand, 
as well as the auxiliary energy demand of vehicles. For auxiliary energy 
demand, we especially focus on the additional energy demand needed to 
operate the automation system. 

The paper is structured as follows: In chapter 2, we outline some of 
the studies that have been conducted on the influence of vehicle 
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automation on vehicle fuel demand. Afterwards, we lay out our meth
odology in chapter 3. We apply this to analyzing highway and city 
driving in chapter 4, and discuss the implications of our results in 
chapter 5. Finally, we summarize our findings in chapter 6. 

2. Literature review: The many influences of automated and 
connected driving on the energy demand of the transport sector 

Automated vehicles perceive their environment using a wide range 
of sensors. Based on the data collected by these, algorithms are used to 
plan long- and short-term vehicle driving routes and to control vehicle 
movement (Campbell et al., 2010; Pendleton et al., 2017). Details on the 
sensors used, their limitations, and current challenges are described in 
Feng et al. (2021) and Yeong et al. (2021). 

The design of suitable algorithms currently poses major challenges to 
automated driving. In addition to the obtaining of timely and reliable 
results, the energy demand of the automation system is a major 
constraint that we will further investigate herein. 

In addition to the higher energy demand deriving from the auto
mation system, the potential to reduce the specific energy demand per 
vehicle kilometer driven lies in the changes in driving style that auto
mated vehicles may feature compared to conventional ones. Based on a 
more precise perception of vehicle velocities and distances, automated 
vehicles may be more farsighted, which would lead to a smoother 
driving style with fewer acceleration and deceleration phases. 
Communication between vehicles and with infrastructure may further 
increase perception of the traffic situation and therefore the vehicle’s 
planning horizon (Dong et al., 2020; Pendleton et al., 2017). However, 
the optimal layout of such an infrastructure communication system with 
regard to coverage and cost is still a topic under investigation (Mou
bayed et al., 2020). 

A multitude of studies have been conducted to estimate the possible 
effect of automated driving on energy demand and greenhouse gas 
emissions in passenger and freight transport. In order to obtain an 
overview of the potential impacts, we start with the results of three re
view papers by Lee and Kockelman (2019), Massar et al. (2021), and 
Wadud et al. (2016) and related studies. 

Lee and Kockelman (2019) analyzed the impact of automated vehi
cles on the energy demand for passenger transport in terms of the 
additional travel induced by automated vehicles, changes in driving 
style, vehicle interactions, and powertrain choice. They found travel to 
increase by 22 % to 46 %, changes in driving style to change energy 
demand from –33 % to + 15 %, vehicle interaction to reduce energy 
demand by 8 % to 49 %, and switching from a combustion engine to an 
electric drivetrain to reduce energy demand by 30 % to 70 % (Lee and 
Kockelman, 2019). Furthermore, they found energy demand for the 
automation system to increase overall energy demand by 4 % to 15 %, 
whereas the right-sizing of vehicles and ride-sharing were found to 
decrease overall energy demand by 5 % to 12 % (Lee and Kockelman, 
2019). 

Wadud et al. (2016) differentiated the effects on energy demand into 
energy intensity and travel demand factors. Energy intensity factors 
include eco-driving, congestion-mitigation, platooning, higher driving 
speeds, lower acceleration, crash-avoidance, right-sizing, and vehicle 
features for comfort. Travel demand factors include reduced travel costs, 
new user groups, and changes in transport services. The authors ex
pected the energy intensity factors to already have an impact at low 
levels of automation and to lead to a decrease in energy demand, 
whereas the travel demand factors only start having an impact at higher 
levels of automation, leading to an increase in energy demand. 

Chen et al. (2019) used the changes in fuel demand specified by 
Wadud et al. (2016) and coupled them with market introduction sce
narios for both partially and fully automated vehicles in highway and 
city driving settings. In the most pessimistic scenario, with a strong in
crease in travel demand and low fuel savings by automated vehicles, 
they found overall energy demand to increase by 30 % compared to the 
base scenario, whereas for the most optimistic scenario, they found 
overall energy demand to decrease by 45 % (Chen et al., 2019). 

Roca-Puigròs et al. (2023) conducted a further study focused on a 
market introduction and car fleet development for automated vehicles, 
investigating the impact of vehicle electrification, automation, and 
shared mobility. They assumed that automated vehicles will lead to an 
increase in passenger kilometers traveled by 16.4 % to 21.8 % as a result 
of new user groups. In turn, they found the utilization of ride-sharing to 

Fig. 1. Possible effect of automated driving on vehicle energy demand; see: Chen 2019 (Chen et al., 2019), Lee 2019 (Lee and Kockelman, 2019), Roca-Puigros 2023 
(Roca-Puigròs et al., 2023), Wadud 2016 (Wadud et al., 2016). 
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counter the increase in passenger kilometers and lead to an overall 
reduction in energy demand. However, the largest impact on energy 
demand and greenhouse gas emissions was caused by the electrification 
of the vehicle fleet. 

Massar et al. (2021) separated the factors that could increase or 
decrease greenhouse gas emissions for automated vehicles into positive 
and negative. Positive factors include eco-driving strategies, vehicle 
right-sizing, efficient routing, and carpooling, whereas negative ones 
include increased travel demand, faster travel speeds, and empty-vehicle 
travel. The authors conclude that the specific energy demand per vehicle 
kilometer driven is likely to decrease. However, the effects are out
weighed by an even greater increase in overall vehicle miles traveled. 

The results of the presented studies regarding the possible effect of 
automated driving on vehicle energy demand are summarized in Fig. 1. 

In our study, we investigate the specific energy demand of automated 
vehicles focusing on the effects of driving styles and the energy demand 
of the automation system. In the following we will dive deeper into the 
literature regarding these topics. We will first present studies on the 
impact of different driving styles and fuel saving strategies and after
wards present studies on the energy demand of the automation system. 

A driving strategy for freight trucks that has already been investi
gated quite extensively in the context of fuel-saving is ‘platooning’, 
whereby vehicles follow each other closely to reduce the air resistance 
the following vehicles are subjected to and therefore reduce their energy 
demand for driving. In the case of two trucks following each other in a 
platoon, it was found that the total fuel demand decreases by 4 % to 15 
% (based on vehicle speed, loading, and following distance) compared to 
a case in which both vehicles are driving separately (Slowik and Sharpe, 
2018; Tsugawa et al., 2016). However, platooning presents operational 
challenges like the need to coordinate freight trips. Furthermore, not all 
driving distances are suitable for platooning. It was assumed by Mur
atori et al. (2017) that a minimum speed of 80 km/h over a period of at 
least 15 min is necessary for platooning to take place and with that 
approach 66 % of US truck miles were found to be suitable for pla
tooning. Combining the results from the presented studies, we arrive at a 
2.6 % to 9.9 % decrease in fuel demand through platooning. 

An additional benefit for freight trucks are possible changes in the 
operational strategies through the omission of the driver. Bray and 
Cebon (2022) found reducing the truck driving speed from 90 km/h to 
70 km/h to be economically-viable for automated trucks, but not to be 
so for human-driven ones due to the additional costs in driver wages 

(Bray and Cebon, 2022). Furthermore, the authors found the speed 
reduction to reduce the vehicle’s mechanical energy demand by 26 % for 
a 29.5 t semi-truck in a simplified start–stop driving cycle (Bray and 
Cebon, 2022). Moving freight trips to other times such as during the 
night in order to bypass heavy traffic could be another option for saving 
fuel, with an estimate of about 2 % of fuel being expended in traffic jams 
in the US in 2016, rising to as much as 4 % in 2050 (Wadud et al., 2016). 

In a simulation study, Kamal et al. (2016) found that for the merging 
behavior of vehicles on the highway, the introduction of cooperative 
adaptive cruise control (ACC), and a specifically-designed efficient 
driving system (EDS) for automated vehicles led to an overall increase in 
the fuel economy of vehicles by 2.7 % (ACC) to 8.8 % (EDS) and 6.0 % 
(ACC) to 14.3 % (EDS) compared to the scenario without those driving 
strategies, with an automated vehicle share of 10 % and 50 % respec
tively. In addition to that, not only the performance of the automated 
vehicles was better than in the base-case scenario, but also the perfor
mance of the remaining vehicles increased. Automated vehicles were 
thus able to improve traffic flows. 

In another study, Liu et al. (2017) assumed the driving cycles of 
automated vehicles to have lower acceleration values and so to be 
smoother than those of human-driven ones. They smoothened the 
standard driving cycles using smoothing splines and analyzed the effect 
of these so-called “eco-autonomous driving cycles” on road emissions 
using the US Environmental Agency’s Motor Vehicle Emission Simulator 
(MOVES). The results showed that especially for driving cycles with 
many acceleration and breaking phases, emissions could be significantly 
reduced with the introduction of the smoother driving cycles of auto
mated vehicles. 

The studies presented thus far mostly neglect the additional energy 
demand for the automation system when assessing the energy implica
tions of changes in driving behavior and utilization of the vehicles. In 
our study, we investigate the trade-off between driving strategies and 
the additional energy demand of the automation system. Therefore, we 
will now present some studies that focus strongly on the energy demand 
of the automation system. 

Lin et al. (2018) estimated the power demand of the computational 
system on the basis of the installed hardware components. Including 
cooling demand and storage, they estimated the power demand to range 
from about 500 W for a system with one central processing unit (CPU) 
and one field-programmable gate array (FPGA), to 1800 W for a system 
with one CPU and three graphics-processing units (GPUs). The 

Fig. 2. Estimated power and energy demand of the automation system; see: Agora 2021 (Agora, 2021), Gawron 2018 (Gawron et al., 2018), Lee 2019 (Lee and 
Kockelman, 2019), Lin 2018 (Lin et al., 2018), Liu 2019 (Liu et al., 2019), Schall 2021 (Schall et al., 2021), Sigle 2022 (Sigle and Hahn, 2022). 
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additional power demand (1800 W) was estimated to reduce the driving 
range of a Chevrolet Bolt by up to 11.5 %. 

Gawron et al. (2018) assumed the computational system for auto
mated vehicles to consist of two Nvidia Drive PX2s with a power demand 
of 96 W each, making the total power demand for the computational 
system around 192 W. They estimated the total energy demand to in
crease by about 2.2 kWh/100 km via the automation system, of which 
about 0.9 kWh/100 km could be attributed to the power demand of the 
computational system. The life cycle energy demand of a battery–
electric vehicle was found to increase by 3.75 % through the automation 
system. 

Lee and Kockelman (2019) assumed the power demand for the 
computational system to be 1000 W. This resembles the power demand 
of a CPU and GPU in a high-performance desktop PC and was estimated 
to increase the fuel energy demand by 4 % to 15 %. 

Liu et al. (2019) investigated the energy increase caused by the 
automation system with respect to the sensors used, as well as the 
communication and computational systems. For the computational 
system of advanced automated vehicles, a Nvidia Drive Pegasus plat
form with a power demand of about 450 W was selected. For redun
dancy, the system was integrated twice, resulting in a total power 
demand of 900 W. The future energy demand was estimated to decrease 
by up to 34 % if computing performance increases by 100 %. The share 
of the computational system was found to be around 61 % of the overall 
increase in energy demand caused by the vehicle’s automation. In total, 
the authors estimate that energy consumption could increase by about 
5 kWh/100 km, which would reduce the range of electric vehicles by up 
to 25 %. 

Agora (2021) used the estimates by Gawron et al. (2018) and Liu 
et al. (2019) as a basis and assumed further improvements for the 
development of the energy demand of computational systems. In total, 
the additional energy demand for the automation system was estimated 
to be 0.46 kWh/100 km for a level 4 vehicle in 2020 and, due to im
provements in energy efficiency, only 0.27 kWh/100 km by 2050. 

Schall et al. (2021) simulated the energy demand of the autonomous 
mover U-shift (a driving module with changeable transport capsules), 
assuming a power demand of 3000 W for the sensors and computation. 
Based on this, Sigle and Hahn (2022) estimated the energy demand for 
the automation system of an autonomous truck to be 2500 W. 

The estimated power and energy demand of the automation system 
are summarized in Fig. 2. 

To conclude our findings from the current literature: The additional 
energy demand of the automation system is quite diversely estimated 
and might have a large influence on the potential fuel economy of 
automated vehicles, but until now it has mostly been neglected in 
studies on the energy implications of changes in driving behavior and 
vehicle utilization resulting from the use of automated vehicles. 
Therefore, in our analysis, we wish to close this gap by assessing the 
impact of different driving strategies on fuel demand while also 
considering the additional power demand for the automation system. In 
this study, we alter the standard driving cycles of conventional vehicles 
to depict those of automated vehicles. We calculate the energy demand 
for those driving cycles to assess the impact of driving cycle changes on 
the energy demand of individual vehicles. In this process, we place great 
emphasis on the role of the energy demand of the automation system 
and perform a sensitivity analysis for it. This allows us to obtain a more 
realistic estimate of the impact of vehicle automation on the vehicle 
energy demand. 

3. Methodology: Fuel demand calculation and driving cycle 
alteration 

In this chapter, we will introduce the methodology used to study the 
impact of automated and connected driving on the fuel consumption of 
vehicles. The methodology is summarized in Fig. 3. We will analyze 
alterations of driving cycles through automated and connected driving. 
Starting with the impact of driving cycle smoothening, as was done by 
Liu et al. (2017), we then turn towards further potentials to adapt 
driving cycles for automated and connected vehicles. We propose the 
elimination of stops in city driving and reducing the speeds of freight 
trucks on highways. 

We wish to study the impact of driving strategies separately from all 
other factors affecting fuel efficiency. Therefore, we take today’s vehi
cles and drivetrain efficiencies and only make changes to the driving 
cycles. We vary the speed, acceleration, and number of stops within 
these to depict the driving style of automated vehicles. 

3.1. Calculation of energy demand based on driving cycles 

The basis of our analyses was provided by the Worldwide Harmo
nized Light Vehicles Test Cycle (WLTC)-3b and the World Harmonized 
Vehicle Cycle (WHVC). We used the former for fuel demand analyses of 

Fig. 3. Methodology for the calculation of the vehicle fuel demand.  
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cars and the latter for heavy duty vehicles. Furthermore, we focus on 
motorway driving for heavy duty vehicles, as this makes up the largest 
share of their driving. For cars, we focus on highway driving for a 
comparison to heavy duty vehicles, as well as city driving, because 
automated vehicles are expected to be introduced through sharing ser
vices in cities (Narayanan et al., 2020). The driving cycle data is taken 
from DieselNet (2020a–b). The WLTC-3b consists of four segments 
(“low,” “medium,” “high,” and “extra high”) representing urban, sub- 
urban, rural and highway driving scenarios, of which we will use the 
first for city driving and the last for highway driving correspondingly. 
We will not use the other two parts because driving in sub-urban or rural 
areas is out of scope for our study. The WHVC consists of three segments 
(“urban,” “rural,” and “motorway”), of which we will only use the last 
for highway driving. Again, we will not use the other two parts because 
truck driving in urban or rural areas is out of scope for this study. 

The WLTC-3b is shown in Fig. 4. It has a total duration of 1800s and 
covers a total distance of 23.266 km. The first segment (“low”/city 
driving) covers the first 589 s and 3.095 km. The vehicle has a maximum 
speed of 56.7 km/h during this segment and stands still for 146 s. The 
last segment (“extra high”/highway driving) covers the last 323 s and 
8.254 km with a maximum vehicle speed of 131.5 km/h and a standstill 
time of 5 s. 

The WHVC is show in Fig. 5. It has a total duration of 1800 s and 
covers a total distance of 20.072 km. The last segment (“motorway”/ 
highway driving) covers the last 419 s and 8.926 km with a maximum 
vehicle speed of 87.8 km/h and a standstill time of 5 s. 

For the driving cycles, we calculate the mechanical energy demand 
of the vehicles using the standard equations of motion considering the 
acceleration as well as the forces for overcoming rolling and air resis
tance at each timestep, taking vehicle mass and size into account. We do 

Fig. 4. WLTC-3b speed profile. The black dashed lines separate the four segments “low,” “medium,” “high,” and “extra high” (adapted from DieselNet, 2020a).  

Fig. 5. WHVC speed profile. The black dashed lines separate the three segments “urban,” “rural,” and “motorway” (adapted from DieselNet, 2020b).  
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not consider any road gradients in the driving cycles. The mechanical 
forces for each timestep t are described by the following equations: 

Faero(t) =
1
2
⋅ρair⋅Afront⋅cd⋅v2(t) (1)  

with the air density ρair (1.225 kg/m3), the frontal area of the vehicle 
Afront, the air drag coefficient cd, and the vehicle velocity v(t). 

Froll(t) = [mveh + mload]⋅g⋅cr(t) (2)  

with the base vehicle mass vveh, the passenger/freight mass mload, the 
gravitational constant g (9.81 m/s2), and the rolling resistance coeffi
cient cr(t), which is assumed to be a constant for the semi-truck and 
described by the following equation adapted from Grube (2014) for a 
mid-sized car: 

cr(t) = 0.008668 + 0.0016745⋅
vkmh(t)

100
+ 0.0002758⋅

[
vkmh(t)

100

]4

(3)  

with vkmh(t) being the vehicle velocity in km/h instead of m/s. 

Facc(t) = [[1.02⋅mveh] + mload ]⋅a(t) (4)  

with the vehicle acceleration a(t). The factor 1.02 is used to calculate the 
effective rotational mass of the vehicle. 

All vehicle parameters used for the calculations can be found in 
Table 1. 

The total mechanical force is calculated as the sum of the three in
dividual forces: 

Fmech(t) = Faero(t) + Froll(t) + Facc(t) (5)  

The momentary mechanical energy demand is then calculated by 
multiplying the total force at a timestep with the current speed and 
length of the timestep τ: 

Emech(t) = Fmech(t)⋅v(t)⋅τ(t) (6)  

It is important to note at this point that the momentary mechanical 
energy demand might be negative for timesteps in which the vehicle 
decelerates. With respect to recuperation, this energy can be reused. 
Therefore, we differentiate the energy demand into positive and nega
tive. 

In addition, we consider the auxiliary energy demand for vehicle 
electronics and the automated driving system based on their respective 
power demands. The momentary auxiliary energy demand is then given 
by: 

Eaux(t) = [Pelec + Paut]⋅τ(t). (7)  

For the vehicle electronics, we assume auxiliary power demands Pelec of 
8660 W for the semi-truck based on estimates by Sigle and Hahn (2022) 
(with the main contributions of 1800 W for the power steering pump, 
4500 W for the air compressor, and 2000 W for heating and air condi
tioning) and 600 W for the mid-sized car based on estimates by Cox 

(2018) and Helms et al. (2022). It should be noted that the assumed 
energy demand for heating and air conditioning is much larger for the 
semi-truck. However, as we will discuss later, higher auxiliary energy 
demands do not affect the fuel demand for semi-trucks as much as for 
mid-sized cars because the mechanical energy demand is much larger for 
semi-trucks. As presented in chapter 2, the estimates for the energy 
demand of the automation system vary strongly. Therefore, we assume 
an auxiliary power demand Paux of 1000 W for our calculation, which is 
in line with the assumption by Lee and Kockelman (2019) and presents a 
middle value for the studies presented. We will vary the power demand 
of the automation system for our analyses of car driving cycles, as it has 
a large impact on the auxiliary energy demand of cars. We do not vary it 
for the truck driving cycles, because the impact on the auxiliary energy 
demand is much smaller for those. To arrive at the final energy/fuel 
demand of the vehicle, the mechanical and auxiliary energy demands 
must be adjusted for energy conversion and transmission efficiencies. 
These efficiencies vary for different drivetrains like internal combustion 
engine vehicles and battery–electric vehicles. We only consider batter
y–electric vehicles and present the efficiencies for these. For the auxil
iary energy demand, the battery efficiency ηbat and transmission 
efficiency ηtrans must be considered. For the mechanical energy demand, 
the engine efficiency ηengine must be considered further. In the case of 
recuperation, the auxiliary energy demand can directly be served by the 
recuperation energy, in which case only the transmission efficiency ηtrans 
is relevant. Recuperation energy above the auxiliary energy demand will 
be transferred to the battery considering the transmission efficiency 
ηtrans. The efficiencies used in this paper can be found in Table 2. 

In order to make our fuel demand model accessible for validation, we 
provide our complete approach. In addition to using the standard 
equations of motion, we also disclose all vehicle parameters and as
sumptions needed for our fuel demand calculation. We use this fairly 
simple approach instead of more complex environmental models to filter 
out the areas of fuel consumption which are affected by changes in the 
driving behavior. 

After these remarks on the determination of the vehicle energy de
mand for driving cycles, we will present the changes in driving cycles 
that we make in this study in the next section. 

3.2. Altering driving cycles for automated and connected vehicles 

Automated and connected vehicles have different driving charac
teristics compared to conventional, human-driven ones. Therefore, 
driving cycles for automated and connected vehicles might differ from 
traditional driving cycles. We will introduce probable changes to justify 
those we use for our analyses in the following. 

3.2.1. The effect of (C)ACC on highway driving: Smoother driving cycles 
First, automated driving might lead to more uniform driving pat

terns. Because of the planning horizon of the automated vehicle, it will 
only drive with the necessary amount of acceleration and deceleration. 
It will be able to react to events early and therefore prevent hard braking 
maneuvers. This results in a smoother driving cycle. As such a behavior 
is already introduced with driver assistance systems like adaptive cruise 
control (ACC), there may not be further benefits of fully automated 
vehicles for smooth driving cycles. Considering vehicle communication 
(cooperative adaptive cruise control (CACC)), on the other hand, might 
further increase the planning horizon and therefore the smoothening 

Table 1 
Vehicle parameters for the mid-sized car and semi-truck; see: [1] (Kraus et al., 
2021); [2] (Grube, 2014); [3] (Cox, 2018); [4] (Helms et al., 2022); [5] (Sigle 
and Hahn, 2022); [6] (Lee and Kockelman, 2019).  

Parameter Mid-sized car Semi-truck 

Vehicle mass mveh [kg] 1508 [1] 12,243 [1] 
Passenger/freight mass mload [kg] 116 [1] 12,491 [1] 
Frontal area Afrontal [m2] 2.25 [1] 8.38 [1] 
Air drag coefficient cd 0.267 [1] 0.53 [1] 
Rolling resistance coefficient cr > 0.008668 [2] 0.0068 [1] 
Vehicle electronics power demand 

Pelec [W] 
600 [3][4] 8660 [5] 

Automation system power demand 
Paut [W] 

1000 (+2000/-800) 
[6] 

1000 (+2000/-800) 
[6]  

Table 2 
Component efficiencies for the mid-sized car and semi- 
truck (based on (Kraus et al., 2021)).  

Efficiencies Value 

Electrical engine ηengine  0.885 
Transmission ηtrans  0.951 
Battery ηbat  0.931  
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effect. Suarez et al. (2022) showed that more aggressive acceleration 
behavior increases vehicle fuel demand, and therefore we expect that 
smoother driving cycles will reduce vehicle fuel demand. 

To assess the effects of driving cycle smoothing, we calculate the 
moving average of the speed profile over a certain time window for (C) 
ACC. We use the moving average to depict the planning horizon of the 
vehicles instead of other smoothening methods like a polynomial fit, for 
which the interpretation of the fit parameters would be more difficult. In 
addition to smoothened (C)ACC driving cycles, we introduce the perfect 
prediction driving cycle for automated vehicles. This depicts a scenario 
in which all vehicles are automated and the driving cycles of the vehicles 
are strongly optimized to reduce acceleration and deceleration phases. 
We implement it in the same way as (C)ACC, but with a much larger time 
horizon. We also limit our analyses of smoothened driving cycles to 

highway driving, as city driving is more complex and involves more 
unpredictable factors (such as pedestrians and cyclists), making long 
planning horizons unrealistic. The effects of driving cycle smoothening 
on fuel demand are presented in chapter 4.1. 

We assume a planning horizon of 130 m for ACC, 400 m for CACC, 
and 2000 m for perfect prediction. This translates into 4 s, 12 s, and 60 s 
planning horizons for cars following the WLTC-3b with a speed of 120 
km/h and of 6 s, 18 s, and 90 s for trucks following the WHVC with a 
speed of 80 km/h. The chosen planning horizons are in line with the 
typical ranges of radar and lidar sensors of up to 250 m. For ACC we set 
the planning horizon to about half the maximum detection range of the 
sensors to account for the fact that obstacles and vehicles limit the 
effective range of the sensors. For CACC the vehicles can make use of the 
data of other vehicles they are communicating with and thereby increase 

Fig. 6. WLTC-3b highway driving segment (“extra high”). The original driving cycle is shown as a solid blue line. The adaptive cruise control (ACC) driving cycle (4 s 
moving average) is shown as a dashed orange line. The cooperative adaptive cruise control (CACC) driving cycle (12 s moving average) is shown as a dotted green 
line. The perfect prediction (PP) driving cycle (60 s moving average) is shown as a dash-dotted red line. Note that the original driving cycle is mostly concealed by the 
other driving cycles. Furthermore, the acceleration and deceleration phases at the beginning and end of the cycle are cropped because they do not differ significantly 
between the different variants. (Original driving cycle adapted from DieselNet, 2020a). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 7. WHVC highway driving segment (“motorway”). The original driving cycle is shown as a solid blue line. The adaptive cruise control (ACC) driving cycle (6 s 
moving average) is shown as a dashed orange line. The cooperative adaptive cruise control (CACC) driving cycle (18 s moving average) is shown as a dotted green 
line. The perfect prediction (PP) driving cycle (90 s moving average) is shown as a dash-dotted red line. Note that the original driving cycle is mostly concealed by the 
other driving cycles. Furthermore, the acceleration and deceleration phases at the beginning and end of the cycle are cropped because they do not differ significantly 
between the different variants. (Original driving cycle adapted from DieselNet, 2020b). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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their planning horizon considerably. We set the planning horizon to 400 
m to account for this but also consider that there are still non- 
communicating vehicles among the communicating ones, reducing the 
planning horizon through unpredictable behavior. For perfect predic
tion we assume that all vehicles are automated and communicate with 
each other. We set 2000 m as the planning horizon to avoid reducing the 
driving cycles completely to a single driving speed. Having only a single 
driving speed would not be appropriate because there may be different 
speed limits due to curves, construction sites, or other road features that 
require an adjustment of the driving speed. We implement this by 
applying a moving average with the respective time horizon over the 
driving cycles. The original highway driving segments and the 
smoothened driving segments for the WLTC-3b and WHVC are depicted 
in Fig. 6 and Fig. 7, respectively. 

The WLTC-3b highway driving speed profile is already smooth in its 
original form, and therefore the ACC speed profile with a 4 s moving 
average does not differ much from the original speed profile. The CACC 
speed profile with a 12 s moving average, on the other hand, weakens 
short speed fluctuations that last up to a few seconds. For the WHVC 
highway driving speed profile, the ACC already shows an effect, as the 
original speed profile features high frequency fluctuations. The effect of 
the CACC is like that of CACC for the WLTC-3b. Perfect planning leads in 
both cases to strongly altered driving cycles with strong acceleration and 
deceleration only at the beginning and end. 

3.2.2. Reducing truck driving speeds on highways 
A second option to alter driving cycles is to change maximum driving 

speeds. We analyze this option for the highway driving of freight trucks. 
In conventional road freight operations, reducing driving speeds to save 
fuel is not profitable, as driver wages increase with longer driving times 
and these costs (in combination with the freight value of time) outweigh 
savings in fuel costs (Bray and Cebon, 2022). In addition, the driving 
hours of human truck drivers underlie strict limitations to ensure driver 
performance and decrease accident risks. The EU regulations are fixed in 
Regulation (EC) 561/2006 (EU, 2006) and the changes made to it (EU, 
2009; EU, 2014; EU, 2016; EU, 2020). Drivers are only allowed to drive 
for nine hours per day and must take a 45-minute break after every 4.5 h 
of driving. Eliminating driver costs and driving time restrictions via fully 
automated truck driving will enable slower driving speeds for fuel- 
saving. It was shown by Bray and Cebon (2022) that reducing the 
target driving speed of a 29.5 t semi-truck from 90 km/h to 70 km/h 

reduces operational costs by 4 % when considering vehicle capital costs, 
fuel costs, and the freight value of time costs without driver costs. In this 
study, we reduce the maximum driving speed from about 90 km/h to 70 
km/h by linearly scaling down excess speeds above 60 km/h to one 
third: 

v70 =

⎧
⎨

⎩

v, v ≤ 60

60 +
v − 60

3
, v > 60

(8)  

This method keeps the driving behavior of the trucks at lower speeds 
unchanged and only affects higher driving speeds. Furthermore, in 
comparison to a hard cut-off at 70 km/h this method adjusts the accel
eration behavior up to this point and therefore prevents kinks in the 
graph. 

We alter the WHVC highway driving segment by reducing speeds in 
excess of 60 km/h to one third, as described above. Instead of a 
maximum speed of 87.6 km/h, we arrive at 69.3 km/h. Furthermore, we 
adapt the length of each timestep so that the vehicle still covers the same 
distance within the driving cycle. The modified driving cycle is shown in 
Fig. 8. It now takes the vehicle 81 s (18.9 %) longer to cover the distance 
of the driving cycle. 

The effects of reduced driving speeds on fuel demand are presented 
in chapter 4.2. Further options for altering freight transport when no 
driver is needed anymore include shifting to nighttime operation to 
reduce peak traffic and so reduce traffic jams. Such effects and the im
plications of automated driving for traffic network performance are not 
analyzed in this paper, however. 

3.2.3. Eliminating stops during city driving 
A last option for altering driving cycles via automated and connected 

driving concerns city driving. Frequent starting and stopping increases 
fuel consumption, because even with recuperation, not all of the energy 
from a vehicle can be regained when decelerating. Hence, reducing/ 
eliminating stopping from city driving might decrease fuel consumption 
in vehicles. We alter the WLTC-3b city driving cycle by removing stop
ping times (removing traffic lights) and setting the minimum driving 
speed to 10 km/h. For a smoother transition to that value, we linearly 
scale down speeds below 12.5 km/h to one fifth. The new driving speed 
is described by the following equation: 

Fig. 8. WHVC highway driving segment (“motorway”). The original driving cycle is shown as a solid blue line. The speed-reduced driving cycle is shown as a dashed 
orange line. (Original driving cycle adapted from DieselNet, 2020b). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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vno− stop =

⎧
⎨

⎩

v, v ≥ 12.5

10 +
v
5
, v < 12.5.

(9)  

We still decrease the speed of the vehicles instead of always keeping 
higher driving speeds to depict the behavior at intersections. Vehicles 

from different directions might cross the intersection at the same time 
with coordinated pathways and reduced speeds to reduce the risk of 
collisions. The length of each time step is adjusted such that the driving 
cycles still cover the same driving distance. The resulting driving cycle is 
shown in Fig. 9. 

For the first 100 s, the driving cycle stays the same as the original 

Fig. 9. WLTC-3b city driving segment (“low”). The original driving cycle is shown as a solid blue line. The driving cycle without stops is shown as a dashed orange 
line. (Original driving cycle adapted from DieselNet, 2020a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 10. WLTC-3b city driving segment (“low”). The original driving cycle is shown as a solid blue line. The speed-reduced driving cycle is shown as a dashed orange 
line. (Original driving cycle adapted from DieselNet, 2020a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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one. However, when the first stop occurs at 100 s in the original driving 
cycle, the vehicle speed in the new driving cycle does not go below 10 
km/h and the vehicle does not wait for around 50 s; instead, it continues 
its driving. In total, the vehicle finishes the new driving cycle 139 s (24 
%) faster than the original one. 

Driving times can be reduced when stops are eliminated from the 
driving cycle and vehicles do not need to wait at traffic lights for long 
periods of time anymore. However, this is a highly advanced assumption 
for a scenario in which all vehicles are automated and the traffic flow is 
managed perfectly (without traffic lights). This alteration and its effect 
on fuel consumption are therefore to be seen as the maximum possible 
(utopian) scenario. A more moderate assumption would be that the 
vehicles communicate with the traffic lights to adjust their speed in 
order to arrive at the traffic light when it turns green so that no waiting 
time is needed for the vehicle. However, overall travel time cannot be 
reduced by this method. Nevertheless, fuel consumption can be altered 
by slower driving speeds. We investigate the effect of reducing driving 
speeds on fuel consumption at first isolated and afterwards in combi
nation with eliminating stops. 

3.2.4. Reducing city driving speeds 
The driving speed reduction for city driving is performed in the same 

way as for the highway driving and is described by the following 
equation: 

v30 =

⎧
⎨

⎩

v, v ≤ 25

25 +
v − 25

3
, v > 25.

(10)  

The length of each timestep is adjusted such that the same distance is 
covered in each. The resulting driving cycle is shown in Fig. 10. 

In particular, the segment of the original driving cycle between 200 
and 350 s is affected by the speed reduction. The reduced speed reduces 
the acceleration and deceleration of the vehicle during this time period. 
Furthermore, this time period is stretched compared to the original 
driving cycle, which reduces the acceleration and deceleration of the 

vehicle even further. Overall, it takes 52 s (8.8 %) longer for the vehicle 
to finish the driving cycle; the average speed therefore drops to 17.4 km/ 
h. It should be noted that “30 km/h max” is to be understood as a speed 
limit for the driving cycle that is exceeded at some points in the same 
way as the 50 km/h speed limit for the original driving cycle. 

3.2.5. Eliminating stops and reducing city driving speeds 
In a final attempt, we combine the two approaches of eliminating 

stops and reducing driving speeds. The resulting driving cycle is shown 
in Fig. 11. 

The time savings of eliminating stops outweigh the additional time 
for driving at lower maximum speeds, so that the new driving cycle is 87 
s (15 %) shorter than the original one. 

The resulting driving cycle does not depict the scenario of adjusting 
driving speeds to arrive at traffic lights in time. In such a scenario the 
overall travel time could not be reduced as it is the case for our driving 
cycle. Instead, the driving cycle combines the two approaches of 
reducing driving speeds and eliminating stops to benefit from the fuel 
savings of both. We therefore expect the lowest fuel demand for this 
driving cycle. 

For city driving, we do not propose a strongly smoothened driving 
cycle like we did for highway driving, as interactions with other road 
users like cyclists or pedestrians make such perfect driving forecasts 
impossible. Furthermore, vehicles reduce their speeds when turning, 
which is specific to a certain location and cannot be smoothened. 
Further aspects of slower driving speeds such as reduced noise and 
pollution in cities, as well as safety benefits, will not be considered in 
this paper. 

4. Use case analyses: Fuel demand for automated vehicles 

We present the changes in fuel demand arising from the driving cycle 
alterations described in the previous chapter. Starting with an analysis 
of the impact of (C)ACC on highway driving cycles in the form of 
smoothening, we will subsequently turn to the impacts of reduced 

Fig. 11. WLTC-3b city driving segment (“low”). The original driving cycle is shown as a solid blue line. The speed-reduced driving cycle without stops is shown as a 
dashed orange line. (Original driving cycle adapted from DieselNet, 2020a). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

E. Jungblut et al.                                                                                                                                                                                                                                



Transportation Research Interdisciplinary Perspectives 22 (2023) 100964

11

driving speeds and fewer stops during city driving. 

4.1. The effect of (C)ACC on highway driving: Smoother driving cycles 

The energy demand for the driving cycles and styles (original, ACC, 
CACC, and perfect prediction) is shown in Fig. 12 and Fig. 13, respec
tively (see also Tables A1 and A2 in the Appendix A). The energy de
mand is calculated for a conventional vehicle and a fully automated one 
that incorporates the energy demand for the automation system. 

For the original WLTC-3b highway driving cycle, the mechanical 
energy demand of a conventional mid-sized car is 59.45 MJ/100 km, 
5.69 MJ/100 km (9.6 % of the mechanical energy demand) can be 
recuperated, and the vehicle electronics require about 1.90 MJ/100 km 
(3.2 % of the mechanical energy demand) auxiliary energy demand. 

The introduction of ACC leads to a 0.6 % decline in the mechanical 
energy demand, whereas the recuperated energy declines by 3.9 % and 
the auxiliary energy demand remains unchanged, resulting in an overall 
0.4 % decrease in fuel energy demand. The introduction of CACC leads 

Fig. 12. Energy demand for the WLTC-3b highway driving segment (“extra high”) calculated for a battery-electric mid-size car. (ACC: adaptive cruise control, 4 s 
moving average; CACC: cooperative adaptive cruise control, 12 s moving average; PP: perfect prediction, 60 s moving average). 

Fig. 13. Energy demand for the WHVC highway driving segment (“motorway”) calculated for a battery-electric semi-truck. (ACC: adaptive cruise control, 6 s moving 
average; CACC: cooperative adaptive cruise control, 18 s moving average; PP: perfect prediction, 90 s moving average). 
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to the same effect but stronger decreases of 3.4 % for the mechanical 
energy demand and 22.5 % for the recuperated energy, resulting in an 
overall 2.2 % decrease in fuel energy demand. 

For the automated vehicle, the mechanical energy remains un
changed, while the auxiliary energy demand increases strongly by 3.21 
MJ/100 km (169 %) through the energy demand for the operation of the 
automation system. The recuperation slightly decreases by 0.7 % as a 
larger part of the excess mechanical energy is used to balance the 
auxiliary energy demand. This leads to an increase in overall fuel energy 
demand of 5 %. 

The introduction of ACC and CACC leads to the same effects as for the 
conventional vehicle, resulting in a 0.4 % and 2.0 % decrease in fuel 
energy demand, respectively. The introduction of perfect prediction 
leads to an 8.4 % decrease in mechanical energy demand, a 43.0 % 
decrease in recuperation energy, and a 4.5 % increase in auxiliary en
ergy demand, resulting in a 5.5 % decrease in fuel energy demand. 
Compared to the original driving cycle of the conventional vehicle, the 
benefits in mechanical and recuperation energy demand through ACC 
and CACC are outweighed by the additional auxiliary energy demand of 
the automation system, resulting in an overall fuel energy demand in
crease of 4.6 % and 2.8 %, respectively. In contrast, the benefits of 
perfect prediction outweigh the additional energy demand, resulting in 
an overall fuel energy demand decrease of 0.8 %. 

For perfect prediction, we vary the auxiliary energy demand of the 
automation system for two more scenarios (PP 3000 W and PP 200 W). 
In the first, we increase the energy demand to 3000 W and in the second, 
we reduce the energy demand to 200 W, reflecting the upper and lower 
bound of the energy demand values for the automation system presented 
in chapter 2. 

The higher energy demand for the automation system increases the 
auxiliary energy demand for the automated vehicle by 129 %. In this 
case, the auxiliary energy demand even exceeds the mechanical energy 
demand by 48.5 %. All benefits from the adaptations of the driving 
cycles are outweighed by the additional energy demand for the auto
mation system. Moreover, overall fuel demand increases by 9.9 % 
compared to the original driving cycle of the conventional vehicle. 

The lower energy demand for the automation system, on the other 

hand, reduces the auxiliary energy demand by 50.2 %. The additional 
energy demand of the automation system is lower than the gains accrued 
by the foresighted driving style. Therefore, the overall fuel demand 
decreases by 4.9 % compared to the original driving cycle of the con
ventional vehicle. 

For the original WHVC highway driving cycle, the mechanical en
ergy demand of the conventional semi-truck was 344.23 MJ/100 km. 
Because of the higher vehicle weight compared to the mid-sized car and 
lower driving speeds, the energy demand for acceleration is propor
tionally larger than the energy demand needed to overcome air resis
tance and hence more energy can be recuperated, totaling 45.20 MJ/ 
100 km (13.1 % of the mechanical energy demand). Auxiliary energy 
demand also makes up a higher share of the total energy demand, 
needing about 34.95 MJ/100 km (10.2 % of the mechanical energy 
demand). 

The introduction of ACC leads to a 1.3 % decline in the mechanical 
energy demand, whereas the recuperated energy declines by 6.7 % and 
the auxiliary energy demand increases by 0.7 %, resulting in an overall 
0.7 % decrease in fuel energy demand. For CACC, the mechanical energy 
demand decreases by 2.8 %, recuperation decreases by 13.3 %, and 
auxiliary energy demand increases by 3.3 %, resulting in an overall 1.4 
% decrease in fuel energy demand. 

For the automated vehicle, the auxiliary energy demand increases by 
4.07 MJ/100 km (11.6 %), with all other energy demands remaining 
unchanged. This leads to an increase in overall fuel energy demand of 
1.0 %. 

Introducing ACC and CACC for the automated vehicle leads to the 
same changes in mechanical energy demand and recuperation as for the 
conventional one, resulting in a 0.7 % and 1.3 % decrease in fuel energy 
demand, respectively. The introduction of perfect prediction leads to a 
7.6 % decrease in mechanical energy demand, a 29.9 % decrease in 
recuperation energy, and a 0.3 % increase in auxiliary energy demand, 
resulting in a 5.0 % decrease in fuel energy demand. Compared to the 
original driving cycle of the conventional vehicle, the additional energy 
demand for the automation system outweighs the reductions in me
chanical energy demand through ACC, resulting in an overall 0.3 % 
increase in fuel demand. However, for CACC and perfect prediction, the 

Fig. 14. Energy demand for the WLTC-3b city driving segment (“low”) calculated for a battery-electric mid-sized car.  
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reductions in mechanical energy demand dominate, so that overall fuel 
demand decreases by 0.3 % and 4.0 %, respectively. 

In conclusion, smoother driving cycles may lead to fuel efficiency 
gains for automated semi-trucks, whereas for mid-sized cars, the addi
tional energy demand of the automation system outweighs the gains. 
However, further benefits may come from platooning or reductions in 
traffic jams, as described in chapter 2, but we do not consider these 
effects in our analysis. 

4.2. Reducing truck driving speeds on highways 

The effects of reducing truck driving speeds (70 km/h max) are 
shown in Fig. 13 (see also Table A2 in the Appendix A). 

Reducing the driving speed of the conventional vehicle leads to a 
strong decrease in the mechanical energy demand of 21.8 %. Recuper
ated energy also decreases strongly by about 40.7 %. Auxiliary energy, 
however, increases via the longer driving time at lower speeds by about 
28.8 %. This results in an overall fuel energy demand decrease of 15.8 %. 

For the automated semi-truck, reducing the driving speed does not 
change the mechanical energy and recuperation, with the only differ
ence being the auxiliary energy demand. Between the original and 
speed-reduced driving cycle, the auxiliary energy demand again in
creases by 28.7 %, resulting in a 15.3 % overall decrease in fuel energy 
demand. Compared to the original driving cycle for the conventional 
vehicle, the savings in mechanical energy demand outweigh the addi
tional energy demand for the automation system, resulting in a 14.5 % 
decrease in overall fuel energy demand. 

In conclusion, reduced driving speeds may lead to large fuel effi
ciency gains for conventional as well as automated semi-trucks. 

4.3. Eliminating stops during city driving 

We now turn to city driving for cars. We eliminate stops during the 
city driving cycle and set the minimum driving speed to 10 km/h, as 
described in chapter 3.2. The effect of this on the energy demand is 
shown in Fig. 14 (see also Table A3 in the Appendix A). 

For the original driving cycle, the conventional mid-sized car has a 
mechanical energy demand of 45.28 MJ/100 km. Because of frequent 
deceleration phases, a large amount of energy can be recuperated. In 
total, 18.04 MJ/100 km can be recuperated (39.8 % of the mechanical 
energy demand). Furthermore, the auxiliary energy demand is high 
because of the low driving speeds and an assumed constant power de
mand. The auxiliary energy demand is 8.07 MJ/100 km (17.8 % of the 
mechanical energy demand). 

Eliminating stops from the driving cycle has minor effects on the 
mechanical energy demand and recuperation, as only acceleration and 
deceleration phases at low speeds are cut out, resulting in a 2.1 % and 
3.2 % reduction, respectively. The main difference arises in auxiliary 
energy demand, which decreases by 30.1 %. The difference is primarily 
caused by the 139 s faster completion of the driving cycle. Overall, the 
vehicle fuel energy demand decreases by 6.6 % via the elimination of 
stops in the driving cycle. 

For the automated vehicle in the original driving cycle, 15.09 MJ/ 
100 km are added to the auxiliary energy demand for the operation of 
the automation system, which is an increase of about 187 %. Further
more, the recuperation energy is reduced by 5.4 %, as more excess 
mechanical energy is used to compensate for the additional auxiliary 
energy demand. In total, this results in a 33.7 % increase in vehicle fuel 
demand. 

Eliminating stops from the driving cycle again primarily influences 
the auxiliary energy demand. Mechanical energy demand and recuper
ation energy decrease by 2.1 % and 3.0 %, respectively, whereas the 
auxiliary energy demand decreases by 29.0 %. In total, the fuel energy 
demand decreases by 11.8 %. Compared to the original driving cycle of 
the conventional vehicle, the fuel energy demand increases by 17.9 %, as 
the additional energy demand for the automation system outweighs by 

far the energy savings of a shorter driving time. 

4.4. Reducing city driving speeds 

We now present the influence of reducing city driving speeds to 30 
km/h. Driving speeds are altered as described in chapter 3.2. Speeds in 
excess of 30 km/h are reduced to one third for the WLTC-3b city driving. 
The effect on the energy demand of the vehicle is shown in Fig. 14 (see 
also Table A3 in the Appendix A). 

Reducing the maximum driving speed leads to a decrease in the 
mechanical energy demand of 34.6 %. At the same time, recuperation 
decreases by 52.9 %, as the deceleration phases in the driving cycle are 
not as strong anymore. Furthermore, the auxiliary energy demand in
creases by 20.7 %. The increase is larger than merely the time increase of 
the driving cycle (8.8 %) because the auxiliary energy demand will be 
directly covered by the excess mechanical energy during deceleration 
phases, which is balanced before calculating recuperation energy and 
auxiliary energy demand. The recuperation is unable to cover the 
auxiliary energy demand as much as at 50 km/h, and therefore the 
remaining auxiliary energy demand increases. Nevertheless, the total 
fuel demand decreases by about 20.1 % for the reduced speed driving 
cycle. 

For the automated vehicle, reducing the speed decreases the recu
peration energy by 57.3 %, while increasing the auxiliary energy de
mand by 20.7 %. The increase in auxiliary energy demand is outweighed 
by the decrease in mechanical energy demand, resulting in an overall 
decrease in fuel energy demand of 9.8 %. However, in comparison to the 
original driving cycle of the conventional vehicle, the increase in 
auxiliary energy demand greatly outweighs the decrease in mechanical 
energy, resulting in an overall fuel energy demand increase of 20.7 %. 

4.5. Eliminating stops and reducing city driving speeds 

We now look at the effect of combining the approaches of elimi
nating stops and reducing driving speeds from the previous sections. In 
this way, the benefits of both approaches are combined. In particular, 
the standing times (156 s total), which add to the energy demand 
through the power demand for the operation of the automation system 
(1000 W), are eliminated, which lowers the energy demand by about 5 
MJ/100 km. As the fuel-saving aspects of the two modifications are 
independent of each other, the benefits of the modifications should add 
up, resulting in higher total fuel savings. The overall effect on fuel de
mand is shown in Fig. 14 (see also Table A3 in the Appendix A). 

The reduction in the maximum driving speed and elimination of 
stops leads to a decrease in the mechanical energy demand of 36.6 %. 
Because of the lower acceleration and deceleration rates, recuperation 
decreases strongly, by 56.0 %. Lastly, the auxiliary energy demand de
creases by 9.4 %, as the time savings from eliminating the stops 
outweigh the additional time it takes because of the slower driving 
speeds. 

For the automated vehicle, eliminating stops and reducing driving 
speeds reduces the recuperation energy even further, by 60.3 %, because 
a larger part of the excess mechanical energy is directly used to serve the 
auxiliary energy demand. On the other hand, the auxiliary energy de
mand decreases by about 8.2 %, which is less than for the conventional 
vehicle, even though a larger portion of the recuperation is used, as the 
energy demand is simply much larger. Overall, fuel energy demand 
decreases by 21.6 %. The decrease is less than for the conventional 
vehicle, as the auxiliary energy demand has a higher share for the 
automated vehicle and decreases less than the mechanical energy de
mand. Compared to the original driving cycle for the conventional 
vehicle, the decrease in mechanical energy demand and recuperation 
nearly offsets the increase in auxiliary energy demand, resulting in a 4.9 
% increase in vehicle fuel demand. 

We retain the changes to the driving cycle and again vary the 
auxiliary energy demand of the automation system to 3000 W and 200 
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W for two more scenarios. 
The higher energy demand for the automation system increases the 

auxiliary energy demand for the automated vehicle by 144 %. In this 
case, the auxiliary energy demand even exceeds the mechanical energy 
demand by 80.2 %. All benefits from the adaptations of the driving 
cycles are outweighed by a large margin by the additional energy de
mand for the automation system. Overall, fuel demand increases by 
73.2 % compared to the original driving cycle of the conventional 
vehicle. 

The lower energy demand for the automation system, on the other 
hand, reduces the auxiliary energy demand by 53.2 %. The additional 
energy demand of the automation system is lower than the gains 
through the lower driving speeds and omitted stops. Therefore, the 
overall fuel demand decreases by 20.1 % compared to the original 
driving cycle of the conventional vehicle. 

5. Discussion 

The effects of driving cycle smoothening for the highway driving of 
conventional vehicles were shown to be in the low percentage area (-2.2 
% for the mid-sized car and − 1.4 % for the semi-truck). The absolute fuel 
energy demand for a semi-truck in WHVC highway driving was almost 
six times the energy demand for a mid-sized car in WLTC-3b highway 
driving. Therefore, the absolute energy demand declines through ACC 
and CACC is larger for semi-trucks. Nevertheless, the relative decrease in 
energy demand for the WLTC-3b is almost two times higher than for the 
WHVC in the case of CACC. However, when considering an additional 
energy demand of 1000 W for the automation system, the advantage of 
the car diminishes. The energy demand of the automation system nearly 
offsets the fuel efficiency gains for semi-trucks (-0.3 %) and even leads to 
an increase in the energy demand for mid-sized cars (+2.8 %). However, 
for the strongly-altered perfect prediction driving cycles of automated 
vehicles, fuel efficiency increased for both vehicle types (-4.0 % for semi- 
trucks and − 0.8 % for mid-sized cars). It should be noted that reducing 
acceleration and deceleration phases has a much weaker impact on the 
fuel demand for electric vehicles than it has for combustion vehicles. The 
calculated fuel savings should therefore be seen as a lower bound for the 
impact of driving cycle smoothening. Furthermore, the vehicle weights 
for the mid-sized car is assumed rather light in our study. This leads to a 
conservative estimation of the benefits of vehicle automation on vehicle 
fuel demand as higher vehicle weights would lead to stronger fuel de
mand decreases through lesser acceleration and deceleration. In addi
tion to that, further benefits may come from platooning or the reduction 
of traffic jams, as described in chapter 2, but these effects were not 
considered in our analysis. 

We further analyzed the potential for reducing truck driving speeds 
on highways, reducing driving speeds above 60 km/h to one third, 
resulting in a maximum driving speed of 69.3 km/h instead of 87.6 km/ 
h, which led to a decrease in mechanical energy demand of 21.8 %. This 
is in line with the results from Bray and Cebon (2022), in which a target 
speed reduction from 90 km/h to 70 km/h for a 29.5 t semi-truck was 
found to reduce mechanical energy demand by 26 %. The difference 
between the results can be attributed to different vehicle masses, as well 
as rolling and air resistance factors. Considering the additional energy 
demand for the automation system, the overall fuel energy demand was 
found to decrease by 14.5 %. Slower driving speeds could therefore be 
an option for automated trucks to save costs and reduce CO2 emissions at 
the same time. 

Eliminating stops from city driving cycles was shown to reduce fuel 
demand by 6.6 % for conventional vehicles; therefore, one not only 
saves time but also reduces CO2 emissions. The fuel demand of auto
mated vehicles could even be reduced by 11.8 % through this measure, 
as their auxiliary power demand is higher because of the (constant) 
additional power demand for the automation system. As eliminating 
stops is an advanced assumption for the changes automated vehicles 
might bring to city driving cycles, the result represents an upper bound 

for fuel saving opportunities via optimized traffic flow. Reducing driving 
speeds for city driving was shown to diminish energy demand by around 
20.1 % for conventional vehicles and so might also be a strong measure 
for reducing CO2 emissions from motor vehicles in cities. For automated 
vehicles, however, decreasing maximum driving speeds from 50 km/h 
to 30 km/h was found to decrease fuel demand by just 9.8 % due to the 
additional energy demand for the operation of the automation system. 
Furthermore, the fuel demand of automated vehicles was in any case 
larger than the energy demand of conventional vehicles. 

The energy demand for the operation of the automation system re
duces the fuel efficiency benefits of automated driving strategies in all 
areas. For large semi-trucks, the additional energy demand is less sig
nificant, as the mechanical energy demand is almost six times higher 
than for mid-sized cars. The automation system was found to increase 
the energy demand for semi-truck highway driving by about 1.0 % while 
increasing the energy demand for mid-sized car highway driving by 
about 5.0 %. The increase in total energy demand for the mid-sized car is 
in line with the results from Lin et al. (2018), in which a 1000 W power 
demand for the automation system’s computation processes was found 
to reduce the driving range of a Chevrolet Bolt by up to 6 %. In our case, 
this was enough to equalize the benefits of smoother driving on high
ways for mid-sized cars. For city driving, the impact of the additional 
power demand is even more severe. Through low driving speeds in cities 
(19.8 km/h average) compared to highways (90 km/h average), the 
power demand of the automation system increases the energy demand 
much more. We observed an increase of 33.7 % in fuel demand between 
the non-automated and automated WLTC-3b city driving cycles. When 
we increased the auxiliary energy demand of the automation system 
further, to 3000 W, the gains in mechanical energy demand when 
reducing maximum driving speeds for city driving from 50 km/h to 30 
km/h were equalized by the increase in auxiliary energy demand due to 
the longer driving time. The high auxiliary energy demand was found to 
increase fuel demand for the speed-reduced driving cycle without stops 
by 73.2 % compared to the original driving cycle for the conventional 
vehicle. Such high auxiliary energy demands might not only be caused 
by the automation system but could also reflect the energy demand for 
vehicle heating at low temperatures (Küng et al., 2019) or air condi
tioning at high temperatures (Sigle and Hahn, 2022). Reducing the en
ergy demand for the automation system was shown to be a key factor for 
achieving fuel savings for automated mid-sized cars. When a power 
demand of 200 W was assumed for the automation system, the proposed 
measures could reduce fuel demand and were not outweighed by the 
additional energy demand of the automation system (for both highway 
and city driving). The development of computational systems will lead 
to a reduction in the power demand of the automation system in the 
future. For the development of computing efficiency (computations per 
kWh), Koomey et al. (2011) noted a doubling every 1.57 years from 
1946 to 2009. This would mean an increase in efficiency by a factor of 
about 83 within a decade. However, from 2000 to 2009, this rate slowed 
to a doubling every 2.6 years (Naffziger and Koomey, 2016), which 
would constitute an increase in efficiency by a factor of about 14 within 
a decade. Therefore, a reduction in power demand for the automation 
system from 1000 W to 200 W (a factor of five) could therefore already 
be achieved in about six years. The computational energy demand might 
therefore not be a problem for automated vehicles in the future, but as of 
now it must be considered a burden. 

For automated trucks, the additional energy demand for the auto
mation system may not even result in an increase in auxiliary energy 
demand, because other auxiliary energy demands might be reduced or 
even eliminated. As no driver is required anymore, heating and air 
conditioning for the driver cabin are no longer needed (Sigle and Hahn, 
2022). For trucks, the energy demand could already be reduced by the 
proposed measures when considering the additional energy demand of 
the automation system. A reduced energy demand would therefore only 
increase the efficiency of the proposed measures. 

For passenger vehicles, such decreases in the energy demand for 
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heating or air conditioning are not feasible because passengers still 
travel within the vehicles and their comfort must be taken into account. 
The increase in fuel demand through the energy demand for the auto
mation system might severely hinder automated vehicle uptake for cars 
in urban applications, as operational costs increase by a large margin 
and, in the case of battery–electric vehicles, the range of the vehicles 
decreases by the same factor. In particular, shared autonomous mobility 
concepts for urban areas could suffer from this. Furthermore, measures 
to increase traffic efficiency through automation technology will always 
face an uphill climb when considering vehicle energy demand, as the 
additional energy demand for the automation system must be overcome. 
The measures proposed in this paper, eliminating stops during city 
driving as well as reducing driving speeds, for example while reducing 
energy demand for conventional cars by 6.6 % and 20.1 %, respectively, 
were shown not to outweigh the additional energy demand of the 
automation system for mid-sized cars; on the contrary, fuel demand 
increased by a respective 17.9 % and 20.7 %. Again, it should be noted 
that the fuel savings are calculated for electric vehicles. The elimination 
of starts and stops would result in much larger fuel savings for com
bustion vehicles. The calculated fuel savings are therefore to be seen as a 
lower bound. 

We did not consider network and traffic flow effects of automated 
vehicles in our study. Higher energy demands of individual vehicles 
might be omitted by fuel efficiency gains on the network level, e.g., 
through less jams. In such a case, early vehicle owners should be sup
ported by the government, if necessary, to cover the higher costs asso
ciated with the higher energy demand of automated vehicles when 
penetration is too low for network effects to balance these out. Auto
mated trucks driving at lower speeds should also be supported as not 

only fuel savings can be achieved but also safety levels on highways 
improved. 

6. Conclusions 

In this study, we investigated the influence of changes in driving 
strategies for automated vehicles. We altered the WLTC and WHVC 
standard driving cycles to depict the behavior of automated vehicles. For 
highway driving, we smoothened the driving cycles and found reduced 
fuel demands for automated trucks and no increased fuel demands for 
automated cars because the additional energy demand of the automa
tion system outweighed the benefits of the smoother driving cycle for 
these. In further analyses, we altered the driving cycles by reducing 
maximum driving speeds and eliminating stops. A reduction in the 
driving speeds for trucks driving on highways from 90 km/h to 70 km/h 
was shown to strongly reduce fuel demand. For cars driving in cities, fuel 
demand could also be strongly reduced when reducing driving speeds 
from 50 km/h to 30 km/h. However, we found that this does not hold 
true when considering the additional energy demand for the automation 
system. For trucks, the additional energy demand did not matter much 
because of their high mechanical energy demand. For cars, on the other 
hand, the additional energy demand for the automation system was 
much larger compared to the mechanical energy demand. In addition to 
that lower driving speeds during city driving further increase its impact. 
Automated vehicles were found to have a much higher energy demand 
during city driving compared to conventional ones and even reducing 
driving speeds and eliminating stops was insufficient to outweigh the 
increase in energy demand. We conclude that the additional energy 
demand for the automation system could hinder the introduction of 

Table A1 
Energy demand for the WLTC-3b highway driving segment (“extra high”) calculated for a battery-electric mid-sized car. (ACC: adaptive cruise control, 4 s moving 
average; CACC: cooperative adaptive cruise control, 12 s moving average; PP: perfect prediction, 60 s moving average).  

Energy demand [MJ/100 km] 

Vehicle Driving cycle Mechanical Recuperation Auxiliary Fuel (BEV) Comparison to conventional original 

Conventional Original  59.45  − 5.69  1.90 73.56 (+/- 0 %) – 
ACC  59.11  − 5.47  1.89 73.28 (-0.4 %) − 0.28 (-0.4 %) 
CACC  57.41  − 4.41  1.90 71.97 (-2.2 %) − 1.59 (-2.2 %)  

Automated Original  59.45  − 5.65  5.11 77.22 (+/- 0 %) +3.66 (+5.0 %) 
ACC  59.11  − 5.44  5.08 76.92 (-0.4 %) +3.36 (+4.6 %) 
CACC  57.41  − 4.36  5.14 75.65 (-2.0 %) +2.09 (+2.8 %) 
PP  54.44  − 3.22  5.34 72.99 (-5.5 %) − 0.57 (-0.8 %) 
PP 
3000 W  

54.44  − 3.09  12.21 80.85 (+4.7 %) +7.29 (+9.9 %) 

PP200 W  54.44  − 3.24  2.66 69.93 (-9.4 %) − 3.63 (-4.9 %)  

Table A2 
Energy demand for the WHVC highway driving segment (“motorway”) calculated for a battery-electric semi-truck. (ACC: adaptive cruise control, 6 s moving average; 
CACC: cooperative adaptive cruise control, 18 s moving average; PP: perfect prediction, 90 s moving average).  

Energy demand [MJ/100 km] 

Vehicle Driving cycle Mechanical Recuperation Auxiliary Fuel (BEV) Comparison to conventional original 

Conventional Original  344.23  − 45.20  34.95 443.37 (+/- 0 %) – 
ACC  339.65  − 42.15  35.21 440.21 (-0.7 %) − 3.16 (-0.7 %) 
CACC  334.75  − 39.17  36.12 437.32 (-1.4 %) − 6.05 (-1.4 %) 
70 km/h max  269.18  − 26.80  45.00 373.36 (-15.8 %) − 70.01 (-15.8 %)  

Automated Original  344.23  − 45.17  39.02 447.99 (+/- 0 %) +4.62 (+1.0 %) 
ACC  339.65  − 42.10  39.33 444.90 (-0.7 %) +1.53 (+0.3 %) 
CACC  334.75  − 39.14  40.31 442.08 (-1.3 %) − 1.29 (-0.3 %) 
PP  318.14  − 31.68  39.14 425.41 (-5.0 %) − 17.96 (-4.0 %) 
70 km/h max  269.18  − 26.78  50.22 379.28 (-15.3 %) − 64.09 (-14.5 %)  
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automated vehicles through shared car fleets in cities, as the higher 
energy demand may make it less economically-feasible and severely 
reduce driving ranges for electric vehicles. For the future development 
of automation systems, it is therefore essential to keep computational 
power demands as low as possible while maintaining the necessary 
computational speed and reliability. Future studies regarding the energy 
demand of automated vehicles should further consider the energy de
mand of the automation system as an important factor and model po
tential developments for it. 
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