001 | 1018431 | ||
005 | 20240403082800.0 | ||
024 | 7 | _ | |a 10.1038/s41586-023-06658-5 |2 doi |
024 | 7 | _ | |a 0028-0836 |2 ISSN |
024 | 7 | _ | |a 1476-4687 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-04806 |2 datacite_doi |
024 | 7 | _ | |a 37993571 |2 pmid |
024 | 7 | _ | |a WOS:001169158300012 |2 WOS |
037 | _ | _ | |a FZJ-2023-04806 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Zheng, Fengshan |0 P:(DE-Juel1)165965 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Hopfion rings in a cubic chiral magnet |
260 | _ | _ | |a London [u.a.] |c 2023 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1700821254_5332 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Magnetic skyrmions and hopfions are topological solitons1—well-localized field configurations that have gained considerable attention over the past decade owing to their unique particle-like properties, which make them promising objects for spintronic applications. Skyrmions2,3 are two-dimensional solitons resembling vortex-like string structures that can penetrate an entire sample. Hopfions4,5,6,7,8,9 are three-dimensional solitons confined within a magnetic sample volume and can be considered as closed twisted skyrmion strings that take the shape of a ring in the simplest case. Despite extensive research on magnetic skyrmions, the direct observation of magnetic hopfions is challenging10 and has only been reported in a synthetic material11. Here we present direct observations of hopfions in crystals. In our experiment, we use transmission electron microscopy to observe hopfions forming coupled states with skyrmion strings in B20-type FeGe plates. We provide a protocol for nucleating such hopfion rings, which we verify using Lorentz imaging and electron holography. Our results are highly reproducible and in full agreement with micromagnetic simulations. We provide a unified skyrmion–hopfion homotopy classification and offer insight into the diversity of topological solitons in three-dimensional chiral magnets. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538) |0 G:(EU-Grant)856538 |c 856538 |f ERC-2019-SyG |x 1 |
536 | _ | _ | |a DFG project 403503315 - Grenzflächenstabilisierte Skyrmionen in Oxidstrukturen für die Skyrmionik (403503315) |0 G:(GEPRIS)403503315 |c 403503315 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kiselev, Nikolai S. |0 P:(DE-Juel1)145390 |b 1 |e Corresponding author |
700 | 1 | _ | |a Rybakov, Filipp N. |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Yang, Luyan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Shi, Wen |0 P:(DE-Juel1)195974 |b 4 |u fzj |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 5 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 6 |
773 | _ | _ | |a 10.1038/s41586-023-06658-5 |g Vol. 623, no. 7988, p. 718 - 723 |0 PERI:(DE-600)1413423-8 |n 7988 |p 718 - 723 |t Nature |v 623 |y 2023 |x 0028-0836 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1018431/files/s41586-023-06658-5.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1018431 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165965 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145390 |
910 | 1 | _ | |a Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Institute of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)195974 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130548 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2023-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a IF >= 60 |0 StatID:(DE-HGF)9960 |2 StatID |b NATURE : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NATURE : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a German academic consortium, administered by Max Planck Digital Library: Springer Nature 2021 |2 APC |0 PC:(DE-HGF)0114 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|