001018439 001__ 1018439
001018439 005__ 20240213111708.0
001018439 0247_ $$2doi$$a10.1103/PhysRevB.108.094409
001018439 0247_ $$2ISSN$$a2469-9950
001018439 0247_ $$2ISSN$$a2469-9977
001018439 0247_ $$2ISSN$$a0163-1829
001018439 0247_ $$2ISSN$$a0556-2805
001018439 0247_ $$2ISSN$$a1095-3795
001018439 0247_ $$2ISSN$$a1098-0121
001018439 0247_ $$2ISSN$$a1538-4489
001018439 0247_ $$2ISSN$$a1550-235X
001018439 0247_ $$2ISSN$$a2469-9969
001018439 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04814
001018439 0247_ $$2WOS$$aWOS:001125529500005
001018439 037__ $$aFZJ-2023-04814
001018439 082__ $$a530
001018439 1001_ $$0P:(DE-Juel1)187176$$aAbuawwad, Nihad$$b0$$eCorresponding author$$ufzj
001018439 245__ $$aCrTe 2 as a two-dimensional material for topological magnetism in complex heterobilayers
001018439 260__ $$aWoodbury, NY$$bInst.$$c2023
001018439 3367_ $$2DRIVER$$aarticle
001018439 3367_ $$2DataCite$$aOutput Types/Journal article
001018439 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700825488_5330
001018439 3367_ $$2BibTeX$$aARTICLE
001018439 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018439 3367_ $$00$$2EndNote$$aJournal Article
001018439 520__ $$aThe discovery of two-dimensional (2D) van der Waals magnetic materials and their heterostructures provided an exciting platform for emerging phenomena with intriguing implications in information technology. Here, based on a multiscale modeling approach that combines first-principles calculations and a Heisenberg model, we demonstrate that interfacing a CrTe2 layer with various Te-based layers enables the control of the magnetic exchange and Dzyaloshinskii-Moriya interactions as well as the magnetic anisotropy energy of the whole heterobilayer, and thereby the emergence of topological magnetic phases such as skyrmions and antiferromagnetic Néel merons. The latter are novel particles in the world of topological magnetism since they arise in a frustrated Néel magnetic environment and manifest as multiples of intertwined hexamer textures. Our findings pave a promising road for proximity-induced engineering of both ferromagnetic and long-sought antiferromagnetic chiral objects in the very same 2D material, which is appealing for information technology devices employing quantum materials.
001018439 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001018439 536__ $$0G:(GEPRIS)443405092$$aDFG project 443405092 - Konstruktion von 2D van der Waals Magnetismus auf der Nanoskala (443405092)$$c443405092$$x1
001018439 536__ $$0G:(GEPRIS)462676712$$aDFG project 462676712 - iAFMskyrmionen- Intrinsische antiferromagnetische Skyrmionen aus ersten Prinzipien: Von der Stabilisierung, der Interaktion mit Defekten bis zum effizienten Nachweis (462676712)$$c462676712$$x2
001018439 536__ $$0G:(BMBF)01DH16027$$aPilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)$$c01DH16027$$x3
001018439 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018439 7001_ $$0P:(DE-HGF)0$$aDias, Manuel dos Santos$$b1
001018439 7001_ $$0P:(DE-HGF)0$$aAbusara, Hazem$$b2
001018439 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author$$ufzj
001018439 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.108.094409$$gVol. 108, no. 9, p. 094409$$n9$$p094409$$tPhysical review / B$$v108$$x2469-9950$$y2023
001018439 8564_ $$uhttps://juser.fz-juelich.de/record/1018439/files/PhysRevB.108.094409.pdf$$yOpenAccess
001018439 8564_ $$uhttps://juser.fz-juelich.de/record/1018439/files/PhysRevB.108.094409.gif?subformat=icon$$xicon$$yOpenAccess
001018439 8564_ $$uhttps://juser.fz-juelich.de/record/1018439/files/PhysRevB.108.094409.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018439 8564_ $$uhttps://juser.fz-juelich.de/record/1018439/files/PhysRevB.108.094409.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018439 8564_ $$uhttps://juser.fz-juelich.de/record/1018439/files/PhysRevB.108.094409.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018439 909CO $$ooai:juser.fz-juelich.de:1018439$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001018439 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187176$$aForschungszentrum Jülich$$b0$$kFZJ
001018439 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)187176$$a Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053 Duisburg, Germany$$b0
001018439 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom$$b1
001018439 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Birzeit University, PO Box 14, Birzeit, Palestine$$b2
001018439 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
001018439 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130805$$a Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053 Duisburg, Germany$$b3
001018439 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001018439 9141_ $$y2023
001018439 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001018439 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001018439 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018439 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001018439 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001018439 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001018439 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001018439 980__ $$ajournal
001018439 980__ $$aVDB
001018439 980__ $$aUNRESTRICTED
001018439 980__ $$aI:(DE-Juel1)PGI-1-20110106
001018439 980__ $$aI:(DE-Juel1)IAS-1-20090406
001018439 9801_ $$aFullTexts