001     1018441
005     20231213115703.0
024 7 _ |a 10.1103/PhysRevB.107.144417
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04816
|2 datacite_doi
024 7 _ |a WOS:000976430400005
|2 WOS
037 _ _ |a FZJ-2023-04816
082 _ _ |a 530
100 1 _ |a Garai-Marin, Haritz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Microscopic theory of spin relaxation of a single Fe adatom coupled to substrate vibrations
260 _ _ |a Woodbury, NY
|c 2023
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700822855_5331
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the spin-relaxation mechanism of single adatoms is an essential step towards creating atomic magnetic memory bits or even qubits. Here, we present an essentially parameter-free theory by combining ab initio electronic and vibrational properties with the many-body nature of atomic states. Our calculations account for the millisecond spin lifetime measured recently on Fe adatoms on MgO/Ag(100) and reproduce the dependence on the number of decoupling layers and the external magnetic field. We show how the atomic interaction with the environment should be tuned in order to enhance the magnetic stability, and propose a clear fingerprint for experimentally detecting a localized spin-phonon excitation.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dias, Manuel dos Santos
|0 P:(DE-Juel1)145395
|b 1
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 2
|u fzj
700 1 _ |a Ibañez-Azpiroz, Julen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eiguren, Asier
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1103/PhysRevB.107.144417
|g Vol. 107, no. 14, p. 144417
|0 PERI:(DE-600)2844160-6
|n 14
|p 144417
|t Physical review / B
|v 107
|y 2023
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/1018441/files/PhysRevB.107.144417.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1018441
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Physics Department, University of the Basque Country UPV/EHU, 48080 Bilbao, Basque Country, Spain
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Faculty of Physics, University of Duisburg-Essen & CENIDE, 47053 Duisburg, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130805
910 1 _ |a Faculty of Physics, University of Duisburg-Essen & CENIDE, 47053 Duisburg, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)130805
910 1 _ |a Centro de Física de Materiales, Universidad del País Vasco UPV/EHU, 20018 San Sebastián, Spain
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a IKERBASQUE Basque Foundation for Science, 48013 Bilbao, Spain
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Physics Department, University of the Basque Country UPV/EHU, 48080 Bilbao, Basque Country, Spain
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a EHU Quantum Center, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21