001018477 001__ 1018477 001018477 005__ 20231213115653.0 001018477 0247_ $$2doi$$a10.1055/a-2191-3271 001018477 0247_ $$2ISSN$$a0029-5566 001018477 0247_ $$2ISSN$$a2567-6407 001018477 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04836 001018477 0247_ $$2pmid$$a37935406 001018477 0247_ $$2WOS$$aWOS:001100844500001 001018477 037__ $$aFZJ-2023-04836 001018477 082__ $$a610 001018477 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author$$ufzj 001018477 245__ $$aClinical Applications of Radiomics in Nuclear Medicine 001018477 260__ $$aStuttgart$$bThieme$$c2023 001018477 3367_ $$2DRIVER$$aarticle 001018477 3367_ $$2DataCite$$aOutput Types/Journal article 001018477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700828093_5331 001018477 3367_ $$2BibTeX$$aARTICLE 001018477 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001018477 3367_ $$00$$2EndNote$$aJournal Article 001018477 520__ $$aRadiomics is an emerging field of artificial intelligence that focuses on the extraction and analysis of quantitative features such as intensity, shape, texture and spatial relationships from medical images. These features, often imperceptible to the human eye, can reveal complex patterns and biological insights. They can also be combined with clinical data to create predictive models using machine learning to improve disease characterization in nuclear medicine. This review article examines the current state of radiomics in nuclear medicine and shows its potential to improve patient care. Selected clinical applications for diseases such as cancer, neurodegenerative diseases, cardiovascular problems and thyroid diseases are examined. The article concludes with a brief classification in terms of future perspectives and strategies for linking research findings to clinical practice. 001018477 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001018477 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001018477 7001_ $$aBundschuh, Ralph Alexander$$b1 001018477 7001_ $$aMiederer, Isabelle$$b2 001018477 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b3$$ufzj 001018477 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl Josef$$b4$$ufzj 001018477 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b5$$ufzj 001018477 773__ $$0PERI:(DE-600)2030804-8$$a10.1055/a-2191-3271$$gVol. 62, no. 06, p. 354 - 360$$n06$$p354 - 360$$tNuklearmedizin$$v62$$x0029-5566$$y2023 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/PDF%20RESTRICTED.pdf$$yRestricted 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/POST%20PRINT.pdf$$yPublished on 2023-11-07. Available in OpenAccess from 2024-11-07. 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/PDF%20RESTRICTED.gif?subformat=icon$$xicon$$yRestricted 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/PDF%20RESTRICTED.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/PDF%20RESTRICTED.jpg?subformat=icon-180$$xicon-180$$yRestricted 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/PDF%20RESTRICTED.jpg?subformat=icon-640$$xicon-640$$yRestricted 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/POST%20PRINT.gif?subformat=icon$$xicon$$yPublished on 2023-11-07. Available in OpenAccess from 2024-11-07. 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/POST%20PRINT.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-11-07. Available in OpenAccess from 2024-11-07. 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/POST%20PRINT.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-11-07. Available in OpenAccess from 2024-11-07. 001018477 8564_ $$uhttps://juser.fz-juelich.de/record/1018477/files/POST%20PRINT.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-11-07. Available in OpenAccess from 2024-11-07. 001018477 909CO $$ooai:juser.fz-juelich.de:1018477$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001018477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ 001018477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b3$$kFZJ 001018477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b4$$kFZJ 001018477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b5$$kFZJ 001018477 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001018477 9141_ $$y2023 001018477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 001018477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUKLEARMED-NUCL MED : 2022$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-24 001018477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24 001018477 920__ $$lyes 001018477 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 001018477 980__ $$ajournal 001018477 980__ $$aVDB 001018477 980__ $$aUNRESTRICTED 001018477 980__ $$aI:(DE-Juel1)INM-3-20090406 001018477 9801_ $$aFullTexts