001018539 001__ 1018539
001018539 005__ 20240116084325.0
001018539 0247_ $$2doi$$a10.3390/s23208621
001018539 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04867
001018539 0247_ $$2pmid$$a37896714
001018539 0247_ $$2WOS$$aWOS:001099382400001
001018539 037__ $$aFZJ-2023-04867
001018539 082__ $$a620
001018539 1001_ $$00000-0003-2091-4638$$avan der Linden, Christina$$b0
001018539 245__ $$aAccelerometric Classification of Resting and Postural Tremor Amplitude
001018539 260__ $$aBasel$$bMDPI$$c2023
001018539 3367_ $$2DRIVER$$aarticle
001018539 3367_ $$2DataCite$$aOutput Types/Journal article
001018539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701182015_23345
001018539 3367_ $$2BibTeX$$aARTICLE
001018539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001018539 3367_ $$00$$2EndNote$$aJournal Article
001018539 520__ $$aClinical rating scales for tremors have significant limitations due to low resolution, high rater dependency, and lack of applicability in outpatient settings. Reliable, quantitative approaches for assessing tremor severity are warranted, especially evaluating treatment effects, e.g., of deep brain stimulation (DBS). We aimed to investigate how different accelerometry metrics can objectively classify tremor amplitude of Essential Tremor (ET) and tremor in Parkinson's Disease (PD). We assessed 860 resting and postural tremor trials in 16 patients with ET and 25 patients with PD under different DBS settings. Clinical ratings were compared to different metrics, based on either spectral components in the tremorband or pure acceleration, derived from simultaneous triaxial accelerometry captured at the index finger and wrist. Nonlinear regression was applied to a training dataset to determine the relationship between accelerometry and clinical ratings, which was then evaluated in a holdout dataset. All of the investigated accelerometry metrics could predict clinical tremor ratings with a high concordance (>70%) and substantial interrater reliability (Cohen's weighted Kappa > 0.7) in out-of-sample data. Finger-worn accelerometry performed slightly better than wrist-worn accelerometry. We conclude that triaxial accelerometry reliably quantifies resting and postural tremor amplitude in ET and PD patients. A full release of our dataset and software allows for implementation, development, training, and validation of novel methods.Keywords: Parkinson’s Disease; accelerometry; essential tremor; tremor; wearables.
001018539 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001018539 536__ $$0G:(GEPRIS)502436811$$aDFG project 502436811 - Prospektive Evaluation der Bestimmung des effektivsten Kontaktes mittels individueller Traktographie zur Kontrolle des Tremors bei Patienten mit Tiefer Hirnstimulation (TremTract Studie) (502436811)$$c502436811$$x1
001018539 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001018539 7001_ $$0P:(DE-HGF)0$$aBerger, Thea$$b1
001018539 7001_ $$0P:(DE-HGF)0$$aBrandt, Gregor A.$$b2
001018539 7001_ $$00000-0002-2194-5930$$aStrelow, Joshua N.$$b3
001018539 7001_ $$0P:(DE-HGF)0$$aJergas, Hannah$$b4
001018539 7001_ $$0P:(DE-HGF)0$$aBaldermann, Juan Carlos$$b5
001018539 7001_ $$0P:(DE-HGF)0$$aVisser-Vandewalle, Veerle$$b6
001018539 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b7$$ufzj
001018539 7001_ $$0P:(DE-Juel1)131613$$aBarbe, Michael T.$$b8
001018539 7001_ $$0P:(DE-HGF)0$$aPetry-Schmelzer, Jan Niklas$$b9
001018539 7001_ $$0P:(DE-HGF)0$$aDembek, Till A.$$b10$$eCorresponding author
001018539 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s23208621$$gVol. 23, no. 20, p. 8621 -$$n20$$p8621 -$$tSensors$$v23$$x1424-8220$$y2023
001018539 8564_ $$uhttps://juser.fz-juelich.de/record/1018539/files/PDF.pdf$$yOpenAccess
001018539 8564_ $$uhttps://juser.fz-juelich.de/record/1018539/files/PDF.gif?subformat=icon$$xicon$$yOpenAccess
001018539 8564_ $$uhttps://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018539 8564_ $$uhttps://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018539 8564_ $$uhttps://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018539 909CO $$ooai:juser.fz-juelich.de:1018539$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001018539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
001018539 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a UK Koeln$$b10
001018539 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001018539 9141_ $$y2023
001018539 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001018539 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001018539 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2022$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:03:14Z
001018539 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:03:14Z
001018539 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018539 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001018539 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:03:14Z
001018539 920__ $$lyes
001018539 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001018539 980__ $$ajournal
001018539 980__ $$aVDB
001018539 980__ $$aUNRESTRICTED
001018539 980__ $$aI:(DE-Juel1)INM-3-20090406
001018539 9801_ $$aFullTexts