001     1018539
005     20240116084325.0
024 7 _ |a 10.3390/s23208621
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04867
|2 datacite_doi
024 7 _ |a 37896714
|2 pmid
024 7 _ |a WOS:001099382400001
|2 WOS
037 _ _ |a FZJ-2023-04867
082 _ _ |a 620
100 1 _ |a van der Linden, Christina
|0 0000-0003-2091-4638
|b 0
245 _ _ |a Accelerometric Classification of Resting and Postural Tremor Amplitude
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701182015_23345
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Clinical rating scales for tremors have significant limitations due to low resolution, high rater dependency, and lack of applicability in outpatient settings. Reliable, quantitative approaches for assessing tremor severity are warranted, especially evaluating treatment effects, e.g., of deep brain stimulation (DBS). We aimed to investigate how different accelerometry metrics can objectively classify tremor amplitude of Essential Tremor (ET) and tremor in Parkinson's Disease (PD). We assessed 860 resting and postural tremor trials in 16 patients with ET and 25 patients with PD under different DBS settings. Clinical ratings were compared to different metrics, based on either spectral components in the tremorband or pure acceleration, derived from simultaneous triaxial accelerometry captured at the index finger and wrist. Nonlinear regression was applied to a training dataset to determine the relationship between accelerometry and clinical ratings, which was then evaluated in a holdout dataset. All of the investigated accelerometry metrics could predict clinical tremor ratings with a high concordance (>70%) and substantial interrater reliability (Cohen's weighted Kappa > 0.7) in out-of-sample data. Finger-worn accelerometry performed slightly better than wrist-worn accelerometry. We conclude that triaxial accelerometry reliably quantifies resting and postural tremor amplitude in ET and PD patients. A full release of our dataset and software allows for implementation, development, training, and validation of novel methods.Keywords: Parkinson’s Disease; accelerometry; essential tremor; tremor; wearables.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 502436811 - Prospektive Evaluation der Bestimmung des effektivsten Kontaktes mittels individueller Traktographie zur Kontrolle des Tremors bei Patienten mit Tiefer Hirnstimulation (TremTract Studie) (502436811)
|0 G:(GEPRIS)502436811
|c 502436811
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Berger, Thea
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brandt, Gregor A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Strelow, Joshua N.
|0 0000-0002-2194-5930
|b 3
700 1 _ |a Jergas, Hannah
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baldermann, Juan Carlos
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Visser-Vandewalle, Veerle
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 7
|u fzj
700 1 _ |a Barbe, Michael T.
|0 P:(DE-Juel1)131613
|b 8
700 1 _ |a Petry-Schmelzer, Jan Niklas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dembek, Till A.
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.3390/s23208621
|g Vol. 23, no. 20, p. 8621 -
|0 PERI:(DE-600)2052857-7
|n 20
|p 8621 -
|t Sensors
|v 23
|y 2023
|x 1424-8220
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1018539/files/PDF.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1018539/files/PDF.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1018539
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131720
910 1 _ |a UK Koeln
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SENSORS-BASEL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:03:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:03:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:03:14Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21