Home > Publications database > Accelerometric Classification of Resting and Postural Tremor Amplitude > print |
001 | 1018539 | ||
005 | 20240116084325.0 | ||
024 | 7 | _ | |a 10.3390/s23208621 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-04867 |2 datacite_doi |
024 | 7 | _ | |a 37896714 |2 pmid |
024 | 7 | _ | |a WOS:001099382400001 |2 WOS |
037 | _ | _ | |a FZJ-2023-04867 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a van der Linden, Christina |0 0000-0003-2091-4638 |b 0 |
245 | _ | _ | |a Accelerometric Classification of Resting and Postural Tremor Amplitude |
260 | _ | _ | |a Basel |c 2023 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1701182015_23345 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Clinical rating scales for tremors have significant limitations due to low resolution, high rater dependency, and lack of applicability in outpatient settings. Reliable, quantitative approaches for assessing tremor severity are warranted, especially evaluating treatment effects, e.g., of deep brain stimulation (DBS). We aimed to investigate how different accelerometry metrics can objectively classify tremor amplitude of Essential Tremor (ET) and tremor in Parkinson's Disease (PD). We assessed 860 resting and postural tremor trials in 16 patients with ET and 25 patients with PD under different DBS settings. Clinical ratings were compared to different metrics, based on either spectral components in the tremorband or pure acceleration, derived from simultaneous triaxial accelerometry captured at the index finger and wrist. Nonlinear regression was applied to a training dataset to determine the relationship between accelerometry and clinical ratings, which was then evaluated in a holdout dataset. All of the investigated accelerometry metrics could predict clinical tremor ratings with a high concordance (>70%) and substantial interrater reliability (Cohen's weighted Kappa > 0.7) in out-of-sample data. Finger-worn accelerometry performed slightly better than wrist-worn accelerometry. We conclude that triaxial accelerometry reliably quantifies resting and postural tremor amplitude in ET and PD patients. A full release of our dataset and software allows for implementation, development, training, and validation of novel methods.Keywords: Parkinson’s Disease; accelerometry; essential tremor; tremor; wearables. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 502436811 - Prospektive Evaluation der Bestimmung des effektivsten Kontaktes mittels individueller Traktographie zur Kontrolle des Tremors bei Patienten mit Tiefer Hirnstimulation (TremTract Studie) (502436811) |0 G:(GEPRIS)502436811 |c 502436811 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Berger, Thea |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Brandt, Gregor A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Strelow, Joshua N. |0 0000-0002-2194-5930 |b 3 |
700 | 1 | _ | |a Jergas, Hannah |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Baldermann, Juan Carlos |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Visser-Vandewalle, Veerle |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Fink, Gereon Rudolf |0 P:(DE-Juel1)131720 |b 7 |u fzj |
700 | 1 | _ | |a Barbe, Michael T. |0 P:(DE-Juel1)131613 |b 8 |
700 | 1 | _ | |a Petry-Schmelzer, Jan Niklas |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Dembek, Till A. |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.3390/s23208621 |g Vol. 23, no. 20, p. 8621 - |0 PERI:(DE-600)2052857-7 |n 20 |p 8621 - |t Sensors |v 23 |y 2023 |x 1424-8220 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1018539/files/PDF.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1018539/files/PDF.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1018539/files/PDF.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1018539 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a UK Koeln |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SENSORS-BASEL : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:03:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:03:14Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:03:14Z |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|