

Novel Architecture Exploration

OpenGPT-X: Open Large Language Models

https://www.opengpt-x.de/

Chelsea John, Dr. Andreas Herten Women in HPC SC23 Workshop Denver, United States.

13.11.2023

Novel Architecture Exploration

- Al models on hardware architectures
 - Performance?
 - Energy-efficiency?
 - ♣ Model vs. hardware?
- Define reference benchmarks
- Using two types of models as benchmarks
 - ♣ TensorFlow ResNet-50 Convolutional Neural Network [1,2]
 - PyTorch Megatron-LM^[3] (derived from OpenGPT-X fork)

Tested Hardware

- A100 Node (4x 40 GB GPUs, SXM)[4]
- H100 Node (4× 80 GB GPUs, PCle)^[5]

MI200 Node (4x 128 GB MI250 GPUs)^[5]

• M2000 POD4 (4× GC200 IPUs, ≈ 260 GB)^[5]

^{[1]:} https://github.com/HelmholtzAI-FZJ/tf cnn benchmarks

^{[2]:} https://github.com/graphcore/examples

^{[3]:} https://github.com/NVIDIA/Megatron-LM

ResNet-50 Benchmark Result

Heat-maps: GlobalBatchSize vs. #Devices showing throughput in images per sec

3/5

Megatron-LM Benchmark Result

NVIDIA A100 vs. H100 performance (TFlop/s) against Batch Size

- 800 Million parameter GPT Model
- Trained on single node with 4 GPUs
- Model replicated $4 \times$ (Data Parallel = 4)
- Energy measured using nvidia-smi

Conclusion

- Reference benchmarks for Computer Vision and NLP
- IPU architecture works best for small batch sizes that fit into in-processor memory
- GPU architecture works best for large batch size and scaling
- NVIDIA H100 GPUs performs 1.5× 2× than NVIDIA A100 with 19% less energy consumption

