| 001 | 1018573 | ||
| 005 | 20240116084325.0 | ||
| 024 | 7 | _ | |a 10.1038/s42003-023-05244-9 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-04901 |2 datacite_doi |
| 024 | 7 | _ | |a 37674020 |2 pmid |
| 024 | 7 | _ | |a WOS:001060848200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-04901 |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Taubert, Oskar |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a RNA contact prediction by data efficient deep learning |
| 260 | _ | _ | |a London |c 2023 |b Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1702471269_3807 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies ("contact maps”) as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
| 536 | _ | _ | |a HAF - Helmholtz Analytics Framework (ZT-I-0003) |0 G:(DE-HGF)ZT-I-0003 |c ZT-I-0003 |x 2 |
| 536 | _ | _ | |a Helmholtz AI Consultant Team FB Information (E54.303.11) |0 G:(DE-Juel-1)E54.303.11 |c E54.303.11 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a von der Lehr, Fabrice |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Bazarova, Alina |0 P:(DE-Juel1)192120 |b 2 |u fzj |
| 700 | 1 | _ | |a Faber, Christian |0 P:(DE-Juel1)188661 |b 3 |
| 700 | 1 | _ | |a Knechtges, Philipp |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Weiel, Marie |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Debus, Charlotte |0 0000-0002-7156-2022 |b 6 |
| 700 | 1 | _ | |a Coquelin, Daniel |0 P:(DE-Juel1)177671 |b 7 |
| 700 | 1 | _ | |a Basermann, Achim |0 0000-0003-3637-3231 |b 8 |
| 700 | 1 | _ | |a Streit, Achim |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Kesselheim, Stefan |0 P:(DE-Juel1)185654 |b 10 |u fzj |
| 700 | 1 | _ | |a Götz, Markus |0 P:(DE-Juel1)162390 |b 11 |
| 700 | 1 | _ | |a Schug, Alexander |0 P:(DE-Juel1)173652 |b 12 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s42003-023-05244-9 |g Vol. 6, no. 1, p. 913 |0 PERI:(DE-600)2919698-X |n 1 |p 913 |t Communications biology |v 6 |y 2023 |x 2399-3642 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1018573/files/FZJ-2023-04901.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1018573/files/FZJ-2023-04901.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1018573/files/FZJ-2023-04901.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1018573/files/FZJ-2023-04901.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1018573/files/FZJ-2023-04901.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1018573 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)192120 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)188661 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)185654 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)173652 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
| 914 | 1 | _ | |y 2023 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN BIOL : 2022 |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:13:06Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:13:06Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN BIOL : 2022 |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:13:06Z |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|