001018579 001__ 1018579
001018579 005__ 20231214201903.0
001018579 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04907
001018579 037__ $$aFZJ-2023-04907
001018579 041__ $$aEnglish
001018579 1001_ $$0P:(DE-Juel1)191568$$aVyas, Kunal$$b0$$ufzj
001018579 1112_ $$aNonequilibrium Physics – Current Trends and Future Perspectives$$cBad Honnef$$d2023-08-28 - 2023-09-01$$wGermany
001018579 245__ $$aInvestigating various possibilities to solve the Fermi-Hubbard model using the kinetic energy part for quantum annealing
001018579 260__ $$c2023
001018579 3367_ $$033$$2EndNote$$aConference Paper
001018579 3367_ $$2BibTeX$$aINPROCEEDINGS
001018579 3367_ $$2DRIVER$$aconferenceObject
001018579 3367_ $$2ORCID$$aCONFERENCE_POSTER
001018579 3367_ $$2DataCite$$aOutput Types/Conference Poster
001018579 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1702553046_2342$$xAfter Call
001018579 520__ $$aQuantum annealing can help in finding the ground state of Hamiltonians describing many body systems. One such Hamiltonian is the Fermi-Hubbard Hamiltonian. We investigate the possibility of utilizing quantum phase estimation after the quantum annealing process carried out using the kinetic energy part of the Hubbard model as driving Hamiltonian for ground state calculations. We also try to exploit some symmetries in order to reduce size of the Hilbert space and study minimum gap for the same. We further outline our plan to study quantum annealing for a system described by the Hubbard Hamiltonian and coupled to a bath to investigate the effect of the environmental temperature and disorder on the ideal quantum annealing process for finding the ground state.
001018579 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001018579 536__ $$0G:(GEPRIS)397300368$$aDFG project 397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368)$$c397300368$$x1
001018579 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
001018579 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001018579 8564_ $$uhttps://juser.fz-juelich.de/record/1018579/files/poster_kunal_JuSER.pdf$$yOpenAccess
001018579 8564_ $$uhttps://juser.fz-juelich.de/record/1018579/files/poster_kunal_JuSER.gif?subformat=icon$$xicon$$yOpenAccess
001018579 8564_ $$uhttps://juser.fz-juelich.de/record/1018579/files/poster_kunal_JuSER.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001018579 8564_ $$uhttps://juser.fz-juelich.de/record/1018579/files/poster_kunal_JuSER.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001018579 8564_ $$uhttps://juser.fz-juelich.de/record/1018579/files/poster_kunal_JuSER.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001018579 909CO $$ooai:juser.fz-juelich.de:1018579$$popenaire$$popen_access$$pVDB$$pdriver
001018579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191568$$aForschungszentrum Jülich$$b0$$kFZJ
001018579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
001018579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001018579 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001018579 9141_ $$y2023
001018579 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001018579 920__ $$lyes
001018579 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001018579 980__ $$aposter
001018579 980__ $$aVDB
001018579 980__ $$aUNRESTRICTED
001018579 980__ $$aI:(DE-Juel1)JSC-20090406
001018579 9801_ $$aFullTexts